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ABSTRACT 

In this paper, static analysis of two dimensional functionally graded plates based on three dimensional 

theory of elasticity is investigated. Graded finite element method has been used to solve the problem. The 

effects of power law exponents on static behavior of a fully clamped 2D-FGM plate have been investigated. 

The model has been compared with result of a 1D-FGM plate for different boundary conditions, and it 

shows very good agreement. 
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1. INTRODUCTION 

Functionally graded materials (FGMs) are a new generation of advanced composite materials 

wherein the volume fractions of constituent materials vary continuously through the structure. 

Advantages of functionally graded materials (FGMs) over laminated composites are eliminating 

the delamination mode of failure, reducing thermal stresses, residual stresses and stress 

concentration factors at interfaces. The plates are widely being used in different structures and 

therefore, it is important to study the response of functionally graded plates under mechanical 

loads to optimize their resistance to failure. However investigations into static analysis for FG 

plates by using numerical and analytical methods are presented in Ref. [1-10]. In these papers, the 

material properties are assumed having a continuous variation usually in one direction. The 

majority of these research works deal with plate theories. A small number of investigations have 

been carried out on 1D-FGM clamped plates, [8-10].  

Some works can be found in the literature on modeling nonhomogenous structures by using 

graded finite element method [11-14]. In these researches, it is shown that the conventional FEM 

formulation cause a discontinuous stress field in the direction perpendicular to the material 

property gradation, while the graded elements give a continuous and smooth variation. Therefore, 

by using graded finite element in which the material property is graded continuously through the 

elements, accuracy can be improved without refining the mesh size. 
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Some studies have been carried out about static, dynamic and free vibration of structures made of 

2D-FGMs [15-19]. Their results indicate that the gradation of volume fractions in two directions 

has a higher capability to reduce the mechanical stresses and natural frequencies than 

conventional 1D-FGM.  

 

Conventional functionally graded material may also not be so effective in such design problems 

since all outer surface of the body will have the same composition distribution. Therefore, 

variation of volume fraction in two directions has a higher capability to reduce the mechanical, 

thermal and residual stresses and leads to a flexible design than 1-D FGMs. By using graded 

finite element method to model the 2D-FGM plates, discontinuities and inaccuracies which are 

present in the conventional FEM is eliminated. Using this method, the effects of power law 

exponents on distribution of displacements and stresses have been investigated. 

 

The main aim of the present paper is to present static analysis of 2D-FGM plate based on three 

dimensional theory of elasticity. Material properties vary through both the longitudinal and 

thickness directions continuously. To solve the problem graded finite element method has been 

applied.  

 

2. GOVERNING EQUATIONS 

2.1. Material gradient and geometry 

Consider a rectangular 2D-FGM plate of length a, width b and thickness h, so that 0 x a< ≤ , 

0 y b< ≤ and 0 z h< ≤ . The plate is subjected to uniform load on its top surface, while the 

bottom surface is free. x, y and z are the axis of Cartesian coordinate system; the x-axis is aligned 

with the longitudinal axis and the z-axis with the thickness direction of the plate. 

Two-dimensional FGMs are usually made by continuous gradation of three or four different 

material phases where one or two of them are ceramics and the others are metal alloy phases, and 

the volume fractions of the materials vary in a predetermined composition profile. The lower 

surface of the plate is made of two distinct ceramics and the upper surface of two metals.
1c , 

2c , 

1m and 
2m  denote first ceramic, second ceramic, first metal and second metal, respectively. The 

volume fraction distribution function of each material can be expressed as 

1
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where 
xn  and 

zn  are non-negative volume fraction exponents through the x and z directions.  
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Material properties at each point can be obtained by using the linear rule of mixtures; therefore 

the material property P such as modulus of elasticity and mass density in the 2D-FGM plate is 

determined by linear combination of volume fractions and material properties of the basic 

materials as [13] 

 

1 1 2 2 1 1 2 2 P Pc Vc Pc Vc Pm Vm Pm Vm= + + +  (5) 

 

The volume fractions in Eqs. (1)- (4) reduce to the conventional 1D-FGMs for 0xn =  and in this 

case the material properties vary only through the thickness direction, for this case the lower 

surface of plate is made of a ceramic and the upper surface of a metal alloy. The basic 

constituents of the 2D-FGM plate are presented in Table 1.  

 

It should be noted that Poisson’s ratio is assumed to be constant through the body. This 

assumption is reasonable because of the small differences between the Poisson’s ratios of basic 

materials.  

 

2.2. Equilibrium equations 

In the absence of body forces, the equilibrium equations for 2D-FGM rectangular plates can be 

written as follows: 

 

0
xyxx zx

x y z

σσ σ∂∂ ∂
+ + =

∂ ∂ ∂
 

 

(6) 
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(7) 

0
yzzx zz

x y z

σσ σ∂∂ ∂
+ + =

∂ ∂ ∂
 

(8) 

where u, v, and w are the displacement components along the x, y and z axes, respectively. 

2.3. Stress-strain relations 

The stress- strain relations of linear elasticity from the Hook’s law in terms of the modulus of 

elasticity E and Poisson’s ratio ν in matrix form are as follow 

[ ][ ] [ ]Dσ ε=  

 

(9) 

 

[ ] { }xx yy zz xy yz zx
σ σ σ σ σ σ σ=

T

 

 

 

(10) 

 

[ ] { }xx yy zz xy yz zx
ε ε ε ε ε ε ε=

T

 
 

(11) 
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It should be noted that E varies in the x and z directions and ν is assumed to be constant. 

2.4 Strain-displacement relations 

The strain displacement relations of the infinitesimal theory of elasticity in the rectangular 

Cartesian coordinates are as 

[ ] [ ][ ]d qε =  

 

(13) 
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2.4. Boundary conditions 

For all-round clamped plate, the essential boundary conditions are as 

( ) ( ) ( ) ( ), , ,0, , , , , , , , , , , 0, , 0u v w x z u v w x b z u v w a y z u v w y z= = = =  (16) 

The stress boundary conditions which should be satisfied during solution are as 

( ) ( ) ( ) ( ) ( ), ,0 , , , ,0 , , , ,0 0, 
yz yz xz xz zz

x y x y h x y x y h x yσ σ σ σ σ= = = = =  

( ), ,
zz z

x y h pσ =  

(17) 

 
3. GRADED FINITE ELEMENT MODELING 

Consider a three dimensional 8-node linear brick shape element in the rectangular Cartesian 

coordinates. Nodal coordinates are known in the global xyz- coordinates. Using the finite element 

approximation to the displacement field, the displacement component are approximated by shape 

function N, as 

 
( ) ( ) ( )[ ] [ ] [ ]e e eq N δ=  
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where 
( )[ ] eδ  is the nodal displacement matrix. 
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(20) 

where , 1, 2, , 8iN i = …  are the shape functions of 8-node linear brick element. The components 

of matrix [ ]( )e
N  are as 

( ) ( )( )( )
1

, , 1 1 1
8

i i i i
N ξ η ζ ξξ ηη ζζ= + + +

 

(21) 

where ( ) ( )1 1 , 1 1ξ η− ≤ ≤ − ≤ ≤ and ( )1 1ζ− ≤ ≤ .

 

 

To model the problem, Graded Finite Element Method is used. To treat the material 

inhomogeneity in an FGM, we can use graded elements, which incorporate the material property 
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gradient at the size scale of the element. The graded elements employ the same shape functions to 

interpolate the unknown displacements, the geometry, and the material parameters. This approach 

effectively represents the material variation at the element level and results in smooth solution 

transition across the element boundaries. Using the graded elements in modeling of gradation of 

the material properties results in a manner that is more accurate than dividing the solution domain 

into homogenous elements 

8

1

i i

i

P PN
=

=∑  
(22) 

where 
iP  is the material property corresponding to node i. 

Substituting Eq. (18) in Eq. (13) gives the strain matrix of element (e) as  

[ ]( ) [ ][ ]( ) ( )
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e e e
d Nε δ=  
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where [ ]( ) [ ][ ]( )e e
B d N= [20]. 

The finite element model can be derived using Rayleigh Ritz energy formulation. The details of 

this method could be found in different textbooks [20]. By applying this method to the governing 

equations, the stiffness and force element matrices in Cartesian coordinate system are as follows: 
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(27) 

As the plate is subjected to a uniform load on its top surface, x and y components of force matrice 

are equal to zero. To evaluate stiffness matrix using 8-point Guass quadrature rule, we used a 

transformation between Cartesian coordinate system into local coordinates system 

( 1 , , 1ξ η ζ− ≤ ≤ ) [20].  

Now by assembling the element matrices, the global equilibrium equations for the 2D-FGM plate 

can be obtained as 

[ ]{ } { }K Fδ =  (29) 
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4. RESULTS AND DISCUSSIONS 

4.1 Verification  

 
The present solution can be verified using data of a 1D-FGM plate under the same loading that 

were previously presented in [8]. Therefore, the parameters are given as 0xn = , 1zn = , 

2, 0.2, 70 c

h
a b E GPa

a
= = = , 

2 200 mE GPa= , 1 P Pa=  and 0.3υ = . The non-dimensional 

transverse displacement through the thickness for a 1D-FGM plate with different boundary 

conditions is considered here, and the present results are compared with the published data. Fig. 1 

shows good agreement between these results. 

4.2. Numerical results 

4.2.1. Static analysis 

Consider a 2D-FGM square plate with a side-length a=b=1m and nondimensional thickness 

h/a=0.4. The plate is subjected to a uniform static load on its top surface. Constituent materials 

are two distinct ceramics and two distinct metals described in Table 1. The static pressure and the 

Poisson’s ratio are taken as constant values:  40 P MPa=  and 0.3υ =  . The number of graded 

elements through the x,y and z directions are 17*17*7.  

Figs. 2 shows the distribution of transverse displacement w for a clamped plate on different 

surfaces at 
2

a
y = for the power law exponents 1x zn n= = . This figure shows that the maximum 

magnitude of transverse displacement belongs to the upper surface and its value decreases 

through the thickness.  

Figs. 3, 4 and 5 show the distribution of in-plane displacements u and v and transverse 

displacement w for a clamped plate at , 
2 2

h a
z y= = for different values of power law exponents.  

Fig. 3 denotes that in-plane displacement u is antisymmetrical about x=0.5 m for 0, 2x zn n= = . It 

means, if the longitudinal power law exponent be equal to zero and the material properties vary 

only through the thickness direction, the distribution of in plane displacement u should be 

antisymmetrical. Results illustrate that by increasing the axial power law exponent
zn , the 

magnitude of u and v is decreased, this fact can be seen in Figs. 3 and 4.  

Figs. 6 and 7 show the variation of out-of-plane normal stress 
zσ  and out-of-plane shear stress 

xzσ  with the power law exponents for a clamped plate through the thickness at centerline 

 
2

a
x y= = and  

4

a
x y= = , respectively. Fig. 6 illustrates that the distribution of 

zσ  through the 

thickness of 2D-FGM clamped plate is almost equal for different values of power law exponents. 

Also, the natural boundary conditions at upper and lower surfaces of the plate are satisfied, this 

fact can be seen in Figs. 6 and 7. As it can be seen from the results, the distribution of stresses has 

continuous variations due to using graded elements.  
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5. CONCLUSIONS 

Static analysis of two dimensional functionally graded plates based on three dimensional theory 

of elasticity is considered. Material properties vary through both longitudinal and thickness 

directions. The Graded Finite Element Method, and Rayleigh-Ritz energy formulation is applied. 

The proposed method is verified by the result of a 1D-FGM plate under the same loading which 

is extracted from published literature. The comparisons between the results show that the present 

method has a good compatibility with the existing results. The effects of power law exponents on 

the behavior of clamped plates are investigated. The present results represent that mechanical 

stress distribution can be modified to a required manner by selecting an appropriate volume 

fraction profiles in two directions and this gives designers a powerful tool for flexible designing 

of structures under multifunctional requirements. Also results demonstrate that using graded 

elements provide smoother and more accurate results than homogeneous elements to model the 

inhomogeneous structures. 
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Table 1 Basic constituent of 2D-FGM plate [13] 

 

Constituent                              Material                                      E (GPa)             

1m                                             Ti6Al4V                                        115                  

2m                                             Al 1,100                                         69                  

1c                                                 SiC                                              440                  

2c                                               Al2O3                                           300                  
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Fig. 1 Non-dimensional transverse displacement through the thickness at 
2

a
x y= = compared 

with Ref [8] 
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Fig. 2 Transverse displacement w on different surfaces for a clamped plate at 
2

=
a

y for 

1= =x zn n  

 

Fig. 3 In-plane displacement u for a clamped plate at ,
2 2

= =
h a

z  y for different power law 

exponents 
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Fig. 4 In-plane displacement v for a clamped plate at ,
2 2

= =
h a

z  y  for different power law 

exponents 

 

Fig. 5 Transverse displacement w for a clamped plate at ,
2 2

= =
h a

z  y  for different power law 

exponents 
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Fig. 6 Out-of-plane normal stress 
zσ  for a clamped plate through the thickness at 

2
= =

a
x y for 

different power law exponents 

 

Fig. 7 Out-of-plane shear stress 
xzσ  for a clamped plate through the thickness at 

4
= =

a
x y for 

different power law exponents 


