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ABSTRACT 

 
This work aims to improve the characteristic of the manufactured products using a performance prediction 

model. The proposed approach consists of two phases. The first phase explains how to determine the 

factors affecting the performance of the manufactured part by designing experiments and derive a model 

for measuring performance using artificial neural networks. The second phase explains how to take 

advantage from this predicted model to get the largest number of manufactured products which have the 

better qualities through parts allocation to the matched assembled parts. This approach is explained 

through a case study for the manufacturing of hermetic reciprocating compressors. Results have been 

clarified through illustrative example and showed that the proposed approach is effective. 
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1. INTRODUCTION 
 

Measurements of product performance are difficult and expensive. Prediction of product 

performance is one of the major improvement tools for manufacturing process. Although all 

quality characteristics of each part assembled in a product are under statistical control (through 

specification limits), the final product does not have the same expected performance. 

Consequently, predicting the performance of a product during multi-stage operation is important 

to reduce process variability and to improve yield of production. 

 

Rapidly evolving technologies, which employ advanced techniques, such as lasers, machine 

vision and pattern recognition, are incentives to develop general and accurate prediction 

methodologies for product performance [1-3]. A more viable option is to attain the ability to 

predict how parts may perform after assembly operations. This will help production planning and 

fault finding and improve time to market/volume. Moreover, it will help to control the assembly 

processes to achieve improved performance of the final product. 
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Stochastic optimization is adopted more than deterministic in many situations within 

manufacturing environment [4] and prediction systems are implemented as a proactive rather than 

a reactive manufacturing process improvement tool. Several researchers investigated the use of 

statistical process control (SPC), such as regression model, design of experiments (DOE), and 

artificial neural networks (ANNs) as prediction systems [5-9].   

 

The use of ANN as a prediction model in several manufacturing fields was investigated by 

several researchers including prediction of important information about the manufacturing 

processes, such as, extrusion process parameters, welding characteristics, boring process, machine 

tool failure and surface roughness [7, 10-16]. Johnston et al.[3], for example, developed a 

prediction model to predict the performance of the head of hard disc drive as a finished product 

based on parametric measurements through manufacturing stages. 

 

ANNs are deployed in several applications in manufacturing environments. The most popular 

applications of ANNs in the fields of automation and manufacturing control are in pattern 

recognition and economics. They are used to monitor and recognize abnormal pattern situations 

on SPC charts [17] and as a prediction model [16, 18, 19]. 

 

Many authors [19-22] discussed prediction of equipment behaviour using statistical forecasting 

methods or ANNs in design simulations or operation. Nevertheless, the prediction model for 

product performance within manufacturing processes is not sufficiently addressed through 

literature [3, 16, 23-25]. Moreover, the use of prediction systems for improving performance of 

product during manufacturing is not thoroughly addressed in literature. This work introduces an 

approach to improve the manufactured product characteristic using performance prediction model 

and matched parts allocation. 

 

2. PROPOSED APPROACH 
 

The approach presented in this work consists of two major phases as shown in Fig. 1. The first 

phase aims to provide a prediction model of product performance as a result of the conducting 

DOEs. Experiments are conducted after determination of critical to quality (CTQ) as a 

performance index (PI) then the significant factors are identified. Performance prediction model 

is developed according to the procedures illustrated in the flow chart shown in Fig. 2. 

 

 
 

Fig. 1: The overall structure of the proposed approach 
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In the second phase the matched parts are classified based on the tolerances. The parts are 

represented in part-to-part matrix which shows different levels of product performance. 

Consequently, part allocation procedure is used to identify the appropriate parts to assemble for 

achieving the higher performance level of assembled product. 

 

3. PHASE I: PREDICTION MODEL DEVELOPMENT 

 
3.1. Experiments Procedure 

 
Experiments are designed using DOE as a statistical tool to develop a linear or nonlinear model to 

represent a system. Experiments are conducted to determine the significant factors that are 

influencing PI. These factors will be the predictors for prediction model developed in next step. 

The two-level modelling experiments (factorial and fractional factorial) can be used for this 

purpose. Response surface design and Taguchi method also can be used for same purpose [26, 

27]. 

 

The difficulty with The conventional method involves constructing a predictive model using 

simple regression or correlation tools is that they may be unable to adequately capture the non-

linear relationships between data [28]. ANNs have the ability to model linear and non-linear 

systems without the need to make assumptions implicitly as in most traditional statistical 

methods. They becoming increasingly popular in the last two decades due to its short 

development and fast processing speed [8]. 

 
Fig. 2: Flow chart for performance prediction model development. 

 

3.2. Network Structure 

 
ANNs is built on a number of simple processing elements as shown in Fig. 3. These processing 

elements are often organized into a sequence of layers. All layers of the network are linked by 

weights, which are adapted by learning. The structure of a neural network could be characterized 

by the interconnection architecture among processing elements [29]. 

 

The network structure was itself determined by three factors:(i) Size of the input data, which was 

set equal to number of predictors which results from designed experiments, (ii) Number of hidden 
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layers and the number of hidden neurons are determined by iterative method until it gives a 

satisfactory performance of training, and (iii) The type of coding used to express the target data 

will determine the number of output layer neurons and type of transfer function used. 

 
 

Fig. 3: ANN Structure 

 

The transfer function used in the hidden layers was a hyperbolic tangent sigmoid (tansig) which is 

selected based on better training performance. The tansig function calculates layer output by 

transforming its input between -1 and +1, according to the equation 1; 
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The output layer's transfer function was a linear function (purelin), thus making the layer’s output 

can take on any value and the layer has one neuron, where the output is one value for intended 

performance index (PI). 

 

3.3. Training Data 

 
The training set is collected from experiments, divided into subsets for training, validation and for 

testing. These data are used as inputs to the proposed ANN prediction model and its output is the 

estimated PI. Normalization is used to scale down the range of input data to a range between –1 

and +1 using the following equation:  
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Where, x  is the input value of network, minx
 and maxx

 are the minimum and the maximum 

values in a given set for each variable, respectively. 

 

3.4. Network Training Cycle 

 
In the training cycle, the training examples were presented in a random fashion to the neural 

network. The learning rate was initially set to 0.1. The connection weights were initialized with 

small random values before training and were adjusted after each example was presented into 

network. As the training progressed, these parameters were slowly decreased to allow for fine 

tuning of the network solutions. Mean Square Error (MSE) as statistical criterion is commonly 

utilized to evaluate accuracy of training results according to following equation 3. 
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Where, t and o are target and output of ANN respectively. Also n is the number of the network 

outputs. The training session was stopped either when the MSE fell below 0.02 or the number of 

epochs reaches to 50. 

 

4. REAL CASE STUDY 

 
4.1. Manufacturing environment 

 
In this paper, the manufacturing of hermetic reciprocating compressors is presented as a case 

study. During this manufacturing environment, the parts have complex relationship within its 

multi-stage operation. For developing and manufacturing of higher compressor performance, the 

need for higher efficiency and optimal design are strong incentives to develop general and 

accurate prediction methodologies. This study is focused on the valve unit (including valve plat, 

valve gaskets, cylinder head and muffler). Several influencing and control factors were identified 

and measured. 

 

In a high-volume compressor manufacturing, the defect–free manufacturing process is extremely 

difficult to be developed during many operations for each part. A more viable option is to attain 

the ability to predict how parts may perform after assembly operations. This will aid control the 

assembly processes to obtain improved performance of final product. Although all parts are 

within statistical control limits, variation of final performance occurs. 

 

4.2. Experimental work 

 
The selected control factors for valve unit are valve thickness (Tv), discharge orifice diameter of 

valve plate (Dv) and valve plate gasket thickness (Tg) as shown in in Fig.4. The discharge orifice 

diameter of crank case (Dcc) is also considered with previous factors. The factor levels are lower 

and upper tolerance limits as inferred from geometrical parameters (i.e. within specification 

limits). 

 

The progressive of performance index is expressed as a percentage from the designed value. The 

cooling capacity (CC) progressive percentage (% of Progressive of CC) is computed according to 

equation 4. 

 

100 % ×=
Designed

Measured
CCofeprogressiv

               (4) 

     
Fig. 4: Valve plate and gasket valve plate 
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By classifying the allowed tolerance area of CC% into three classes A, B and C as shown in Fig. 

5, it is obvious that class A is preferred over class B and class B is preferred over class C. When 

the compressor performance lies in Zone C, it is in the worst quality level. Although this 

compressor of class C is accepted according to quality control system, this is not sufficient for 

competition in world markets. 

 

From the historical records of quality test results over a year, 74.49% of tested compressors are in 

class C (not desired class) and 24.16% classified as B class, while only 1.3% in the best class (A 

class). The experiment aims to substantiate a valid relationship between the parameters of parts 

and the corresponding response variable, and hence, to identify the critical parameters having a 

significant contribution in influencing the performance of compressor. 

 

The manufacturing and assembly equipment used is stable and in control statistically. The 

measurement equipment used is the calorimeter tester Microline SRL. All presented cases 

correspond to a domestic hermetic reciprocating compressor. The samples are drawn from the 

same production lot with the same geometrical parameters to minimize differences in part 

qualities. 

 

 
Fig. 5: Classes of CC performance index 

 

Interactions analysis reveals that when the Dv is minimum diameter, the larger Dcc increases the 

cooling capacity (CC) and vice versa. The main effect plot shown in Fig. 6 illustrates that Tg and 

Tv have the biggest influence on cooling capacity, then, Dcc comes next in effect. Finally, the Dv 

has the lowest influence. 
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Fig. 6: Main effects plot for means of CC 
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4.3. ANN Performance Prediction Model 
 

 1)  Neural network model: The network structure is selected based on a number of 

iterations illustrated in Table 1. Input layer consists of four nodes for the inputs corresponds to the 

four predictors which are Tv, Dcc, Dv and Tg. Output layer consists of one neuron that gives its 

output as estimated value of cooling capacity ratio. The used transfer function for this layer is 

purelin. Finally, one hidden layer is selected and it contains 18 neurons. The tansig is used for 

this hidden layer. 

 

The training set contains 32 examples collected from experiments, divided into 85% for training 

and validation and 15% for testing and normalized according to equation 2. 

 
Table 1: Training of networks result summary 

 

Network 

structure 

# Hidden 

layer(s) 

Transfer 

Fun. 
MSE  

Correlation Coefficient R 

Training Validation Test 

4-14-1 1 Tansig 0.0128 0.9938 0.8786 0.9813 

4-16-1 1 Tansig 0.0100 0.9953 0.9564 0.9156 

4-18-1 1 Tansig 0.0083 0.9906 0.9457 0.9800 

4-26-1 1 Tansig 0.0086 0.9897 0.9787 0.9722 

4-28-1 1 Tansig 0.0084 0.9893 0.9832 0.9100 

 

2)  Training results: the accepted performance with the 4-18-1 structure was achieved with 

training performance MSE of 0.0083. The regression analysis was performed on training data set 

to determine highly accuracy network performance with correlation coefficient (R) between target 

and output of simulation of trained ANN of 0.99 as shown in Fig. 7. 

 
 

Fig. 7: ANN training results 

 

3)  Test results: the results of testing the ANN used in this work using unseen data are shown in 

Fig. 7. The convergence condition is considered achieved when the R is greater than 0.97 with 

limitation of the training data set. 
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5. PHASE II: PRODUCT PERFORMANCE IMPROVEMENT 

 
5.1. Classification and Allocation of Parts 

 
After manufacturing stage, the parts have to be classified into classes before starting the assembly 

operation. The matched parts are classified based on predicted performance value obtained by the 

prediction model. The more levels or classes for each factor have to be identified and applied to 

the prediction model. The followed steps to generate a set of data which represents the most cases 

of combinations are: (1) determine number of levels of each factor, (2) identify the combinations 

of full factorial design, (3) apply prediction model on all combinations, (4) sort and classify the 

results into number of levels (e.g. three levels; A, B, C), (5) form part-to-part matrix in which is a 

classification matrix. 

 

The factor combinations are generated as full factorial experiments to cover several alternative 

matched parts. Assuming that X is first part and Y is second part and control factors of each one 

as illustrated in Table 2. The predicted value of product performance from each combination 

between the parts (i.e.5
2
 x 3

2
) is classified into three levels (A, B and C) as in part-to-part matrix 

illustrated in Table 3. 
 

Table 2: Control factors and levels of 1st and 2nd parts 

 

Parts Control factors 
Levels 

1 2 3 4 5 

X 
Tg (12:19 thickness classes) -1 -0.5 0 +0.5 +1 

Dcc (3.12:2.88 mm) -1 0 +1 - - 

Y 
Tv (2.75:2.85 mm) -1 -0.5 0 +0.5 +1 

Dv (2.275:2.525 mm) -1 0 +1 - - 

 

Table 3: Scheme of matched parts classification based on the performance prediction model 

 
Tv 1 1 1 0.5 0.5 0.5 0 0 0 -0.5 -0.5 -0.5 -1 -1 -1

Dv 1 0 -1 1 0 -1 1 0 -1 1 0 -1 1 0 -1

Tg Dcc

1 1 C C B C B B C B B C B B C B B

1 0 B C C B C C B B B B B B B B B

1 -1 B C C B C C B C C B B C B B C

0.5 1 C B B B B B B B B B B B B B A

0.5 0 B B C B B B B B B B B B B B B

0.5 -1 B C C B B C B B C B B C B B B

0 1 B B B B B B B B A B B A B B A

0 0 B B B B B B B B B B B B B B B

0 -1 B B C B B C B B C B B B B B B

-0.5 1 B B B B B A B B A B A A B A A

-0.5 0 B B B B B B B B B B B B B B A

-0.5 -1 B B C B B C B B B B B B B B B

-1 1 B B A B A A B A A B A A B A A

-1 0 B B B B B B B B B B A A B A A

-1 -1 B B C A B C A B B A B B A B B

Assembled 

parts

 

 

To complete the process of allocating matched parts, the parameter of number of parts from each 

class of part is added to the matrix. The classification matrix is populated by adding column for 

quantity of part X and one row for quantity of part Y.  

 

Proposed method to allocate the parts to find largest number of higher performance product by 

concentrating on the cells which have highest performance is as the following:  
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(i) Assign as much as possible to the cell with the highest performance level.  

(ii) Next, satisfied row or column is crossed out and the amounts of part X and Y are adjusted 

accordingly. If both a row and a column are satisfied simultaneously, only one is crossed 

out. 

(iii) Look for the uncrossed-out cell with the highest performance level and repeat the process 

until exactly one row or column is left uncrossed out. 

 

This solution is considered as a better starting solution to get the largest number of assembled 

products that have the highest performance level. For dealing with another objective function, 

there are other methods to solve the assignment problem as illustrated in literature [30, 31]. 

 

6. NUMERICAL EXAMPLE 

 
To present the advantage from the proposed approach, a comparative analysis is performed 

between this proposal and the random assembly method that is usually used. The approach is 

applied to 200 parts to be assembled (100 of each part). 

 

The matrix is filled using one of the two methods followed in such situation. The first is 

traditional method where assembly of parts is randomly processed without consideration of 

product performance level. On the other hand, the second one is carried out by matching parts 

based on their performance levels through the proposed procedure for parts allocation. 

 

Number of parts obtained from each quality level of the proposed method is illustrated in Table 4. 

Table 5 illustrates the predicted performance of product assembled randomly according to 

traditional method and also predicted performance values produced by applying the proposed 

approach. Obviously, the results obtained from new method reveals that the achieved 

improvement is 15% transferred from lowest level into 9% of highest performance level and 6% 

of medium performance levels. 

 
Table 4: Amount of parts on classification matrix using proposed method 

 
Tv 1 1 1 0.5 0.5 0.5 0 0 0 -0.5 -0.5 -0.5 -1 -1 -1

Dv 1 0 -1 1 0 -1 1 0 -1 1 0 -1 1 0 -1

Tg Dcc

1 1 1 1

1 0 4 4

1 -1 4 4

0.5 1 1 1

0.5 0 4 5 13 2 24

0.5 -1 6 6

0 1 1 1

0 0 7 2 9

0 -1 1 6 7

-0.5 1 2 2

-0.5 0 4 13 17

-0.5 -1 9 1 10

-1 1 0

-1 0 3 2 1 6

-1 -1 8 8

8 1 8 12 5 8 13 9 23 7 3 2 1 0 0 100Quantity of part Y

         part Y

part X
Q
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Table 5: Results of parts allocation using proposed approach vs. random assembly 

 

Performance 

level 

Parts allocation 

Improvement 

Using random assembly Using proposed approach 

A 7 16 9% 

B 78 84 6% 

C 15 0 15% 

 

The results of this example are represented in Fig.8 that shows both distributions of performance 

values for assembled compressors applying the two methods. The distribution of the intuitive 

method for product assembly takes up about 72% of the width of the specifications. In contrast, 

the new method produced products take up about 54% of the specification band. As a result, there 

is considerably less variability in the performance of product assembled by the proposed 

approach. 
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Fig. 8: histograms of compressor performance from both methods 

 

7. CONCLUSIONS 

 
The paper presented an approach to improve the characteristics of the manufactured products 

during manufacturing processes utilizing a prediction model built using ANNs technique. The 

proposed approach consists of two phases. The first phase decided the factors affecting the 

performance of the manufactured parts by designing experiments, as well as derives a model to 

predict product performance using artificial neural networks. The second phase explained how to 

take advantage from this predicted model to get the largest number of manufactured products 

have better qualities. The performance of the approach evaluated using a real case study. The 

approach successfully allocated larger number of assembled matched parts that achieved higher 

performance levels. 
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