
International Journal on Computational Science & Applications (IJCSA) Vol.13, No.3, June 2023 

DOI:10.5121/ijcsa.2023.13301                                                                                                                        1 

 
THE ORDER OF NUMBERS AND THE  

GOLDBACH CONJECTURE 
 

Jacqueline Wötzel 
 

ABSTRACT 
 
In the following will be regard the potentiality of order of numbers for the ternary Goldbach conjecture, 

where he claimed that “every number… is an aggregate of three prime numbers”. The order of numbers 

illustrates the possible combinations of prime numbers for the generation of all natural (integer) numbers. 

Two ways to decompose a natural number in a sum of prime numbers are illustrated. Goldbach`s ternary 
conjecture can be confirmed in this way. A binary addition is also possible and requires that a summand be 

a product with a prime number. 
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1. INTRODUCTION 
 
Goldbach discussed in a letter to Euler the way of Fermat to generate prime numbers and he was 

searching for possibilities to fragment natural numbers in a sum of prime numbers.[1] With the 

discovered order of numbers based on a partition technique of all subsequent numbers in three 

classes, it is possible to find a fast and efficient way for the dissection of every number in one 
included highest prime number and a remained number.[2] This article will investigate the 

fragmentation of natural numbers in a ternary sum of prime numbers or as sum of a prime 

number and a product with prime. Another way is to use the order of numbers, where in column 1 
are to find all prime numbers additional to the multiple of 5 and 7. This two ways are possible to 

reconsider the Goldbach conjecture.   

 

2. ORDER OF INTEGER NUMBERS AND THE GOLDBACH CONJECTURE 
 

2.1. Order of natural numbers 
 
Based on a simple partition technique all the two and three divisible numbers appear in separate 

columns, whereby all prime numbers are contained in the resulted first column. This ascending 

order allows endless generation or identification of affiliation to the three columns or classes. The 

successional natural numbers are separated in ascending fashion in three columns with given rule. 
The numbers 1, 2 and 3 are the header and starting point for the three main-columns. To build up, 

it is useful to start with the column 3 where all three-divisible numbers are placed. In column 2 

are to be found all two-divisible numbers before this multiple of 3. In column 1 are placed the 
other numbers before the used multiple of 3, see table 1. All prime numbers and some multiples 

of 5 and 7 are in column 1. The multiples of 5 and 7 are to find in all three columns with an 

alternating regular distance, see table 2. The successive numbers can be separate endless adequate 
to this properties and this allows to identify a structure of the natural and also integer numbers. 

[2] 
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Table 1.  Cutout of separation natural numbers at three columns with 1, 2 and 3 as head. 

 

1 2 3 

5 4 6 

7 8 9 

11 10 12 

13 14 15 

17 16 18 

… … … 

           [2] 
 
All three columns are crossed by multiples of 5 and 7 whose pattern is visible with the 

representation in table 2, where the separate quotients of 5 and 7 are related to the numbers of 

column 1. The quotients of 5 and 7 are able to appear as double helices with defined distances 

and an endless pattern. To recognize helices, the first double helices are marked in orange. Thus 
allowed to find equidistant elimination steps for the multiples of 5 and 7 in the three columns. [2] 

 
Table 2.  Cutout of all quotients to five and seven in the three columns – separated. 

 

Column 1 All multiples of 5  

in the three columns  

     1          2         3 

All multiples of 7  

in the three columns  

     1        2         3 

1 

5 

7 

11 

13 

17 

19 

23 

25 

29 

31 

35 

37 

41 

43 

47 

49 

53 

55 

59 

61 
 

   

1     

      

  2   

    3 

      

  4   

      

5     

    6 

      

7     

      

  8   

    9 

      

  10   

      

11     

    12 

      
 

   

      

1     

      

  2   

      

    3 

      

      

  4   

      

5     

      

    6 

      

      

7     

      

  8   

      

    9 
 

[2] 
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2.2. Relevance of order of numbers to the Goldbach conjecture 
 

All prime numbers can be identify by this order of numbers, see table 1 considering the pattern of 

multiples of 5 and 7, see table 2. The multiples of 5 and 7 can be superposed, e.g. for 35, or they 
can be neighbored. There are two cases to appear of neighboring of multiples of 5 and 7 in 

column 1, see red marked numbers in cutouts in table 3 and 4. The two cases of neighboring 

multiples helps to identify the difference from an arbitrary number to the nearest smaller prime 
number in column 1. The two cases are to find reiterative endless. 

 
Table 3.  Case 1 for proximity of multiples of 5 and 7 in column 1 

 

89 88 90 

91 92 93 

95 94 96 

 
Table 4. Case 2 for proximity of multiples of 5 and 7 in column 1 

 

199 200 201 

203 202 204 

205 206 207 

 

For table 3 as example is 7 the maximum difference from prime number 89 to all successive 

numbers inclusive 96. The number 88 is smaller as 89 and would be have the difference of 5 to 

the next smaller prime number. For table 4 as example is 8 the maximum difference from prime 
number 199 to all successive numbers inclusive 207. This differences also have a pattern in there 

sequence. 

 

2.3. Partition technique with 3 summands of prim 
 

All natural numbers can be composed of the sum of prim and a number between 0 and 8, see 
equation 1.  

 

  n = k + p 

n ∈ ℕ | 1 ≤ n ≤ ∞ , 

k ∈ ℕ | k∈{0,1,2,3,4,5,6,7,8}, 
p ∈ ℙ                                                                    (eq.1) 

 
Three variations are possible; variation 1: a natural number is a prime number (k=0), variation 2: 

a natural number is a prime number to sum with k=1,3,5 or 7 and variation 3: a natural number is 

a prime number to sum with k=2,4,6 or 8. The even numbers in variation 3 are representable as 
sum of 1 and the numbers 1,3,5 or 7 or a product of 2 and multiples, see equation 2. 

 

  k = 2mr = q +1 

 

k ∈ℕ | k∈{2,4,6,8}, 

m∈ℕ | m∈{1,2,3}, 

r ∈ ℙ | r∈{1,3}, 

q ∈ℙ | q∈{1,3,5,7}                                                       (eq.2) 
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The formation of every number is therefore possible binary, where one summand is a prime 

number and one summand is a product of multiples of two (2m , m∈ N | m ∈{1,2,3}) with the 

prime numbers 1 or 3. The formation of every number is also possible as sum of maximal three 

prime numbers. In this case the first summand is the largest prime number underneath a arbitrary 

natural number, the second summand can be 1,3,5 or 7 and the third summand will be 1.  

 

2.4. Prim and the role of number 1 
 

The role of the number 1 is in discussion, because of Euler`s fundamental book with instructions 

to Algebra. In chapter 4 – the original is written in old German and printed in old script – “On the 

nature of integer numbers depending on their role as factors” he wants to show the numbers in 
their function as factors. He makes the difference between numbers who can build up by factors 

and the other group, which can`t build up by factors, which he calls “simple” numbers or prime 

numbers. His explanation starts by 2 because 1 as factor can`t change numbers.[3] At this way he 
avoids the trivial redundancy of implication of number 1 as factor for prime numbers, because it 

has no function. The definition of prime numbers allows to see the number 1 as a prime number. 

As divisible by 1 and itself it is the special case of the same dividend, divisor and quotient. In the 
scheme of order of numbers, see table 1 the numbers 1,2,3,5 and 7 have also a special function as 

head of columns, whereby the columns of 5 and 7 permeate the columns of 1,2 and 3. The 

number 1 is the head and starting point and it is important to start there in column 1 where are 

included all prime numbers in a simple pattern. 
 

2.5. Partition technique with 2 summands where one is a product of prim 
 
Another way to part a natural number is about the periodicity of numbers in column 1, see table 

5. After divide all numbers of column 1 by 9, is to find a high periodicity in consecutive decimal 

numbers. With summation of number 2 and multiples to the sequential numbers they are to 
identify everywhere. 

 
Table 5: Periodicity in column 1 after divided by 9 

 

Numbers of 

column 1 

divided by 9  

0,11111111 
0,55555555 

0,77777777 

1,22222222 
1,44444444 

1,88888888 

…. 

 
Any number is to be divided by 9 to see the distance of this number to column 1, which can be 0, 

0.1, 0.2 or 0.3 and thus one of the summands 0,1,2,3. In this way, each number can be described 

by two summands, where one summand is the number 0,1,2 or 3 and the second is a factor of 
prim with 1,5,7 or 35 and their multiples, see equation 3. In the structure of all quotients in 

column 1, the same sequential regularity can be found as in column 1, where 4/2 is the answer of 

the question to the distances. The multidimensionality of order of numbers is visible. 
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 n = a + kbm p 
 

n,k,m ∈ ℕ | 1 ≤ n,k,m ≤ ∞ , 

a ∈ ℕ | a∈{0,1,2,3}, 

b ∈ ℕ | b∈{1,5,7,35}, 
                                                                           p ∈ ℙ                                                        (eq.3) 

   

3. CONCLUSIONS 
 
Every number is representable as the sum of maximum three prime numbers, where the first 

summand is the largest prime number underneath the given number, the second summand can be 

1,3,5 or 7 and the third summand will be 1. Every number is also representable as the sum of 
maximum two summands, where one summand will be a prime number and the second summand 

is a product of the factor 1,2,5,7 or 35 and there multiples with a prime number. The first 

Goldbach conjecture, also called “ternary” can be confirmed with the consideration of discovered 

order of numbers. A binary addition is also possible and demands that one summand is a product 
with a prime number. Two ways are represented to fragment a natural number in a sum of prime 

numbers. The rules are also applicable for integer numbers. 
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