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ABSTRACT 
 
This work focuses on the derivation and validation of inverse kinematics equations for a planar ball-plate 

robot, a critical step for its precise control. The robot's kinematic model was developed considering a 

simplified equilateral triangular base and mobile platform. We detail the mathematical procedures for 

determining the z-coordinates of the platform's points and establishing the unit vector normal to the 

platform, which are fundamental for the inverse kinematics solution. The derived equations allow for the 

calculation of the joint angles necessary to achieve a desired ball position on the plate. 

 
For modeling and simulation, Matlab and Simulink were utilized. The robot's SolidWorks design was 

exported to Simulink using the Simscape Multibody Link tool, and a PID controller was integrated to 

achieve realistic simulated behavior. Simulation results demonstrate that the derived inverse kinematics 

equations accurately guide the robot, with the simulated ball trajectory closely matching the desired 

circular path. Furthermore, computer vision techniques, implemented with OpenCV in Python, were 

employed for real-time detection and tracking of both the platform and the ball. This visual feedback 

system provides crucial positional data, allowing for the potential closure of the control loop for adaptive 

visual control. This project successfully combines precise inverse kinematics with visual feedback, laying a 

robust foundation for advanced control systems in planar ball-plate robots. 
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1. INTRODUCTION 
 

The field of robotics demands a deep understanding of the interplay between mechanical design 

and computational control [1]. This work focuses on deriving the inverse kinematics equations 

for a specific type of manipulator: a planar ball-plate robot. These equations are fundamental for 

controlling a robot's position and orientation, allowing the determination of the joint movements 

needed to reach a desired point in space [2]. 

 
For modeling and simulation of this robotic system, Matlab and its simulation environment, 

Simulink, were chosen. Matlab, with its matrix-based approach, offers an intuitive and efficient 

platform for expressing and solving complex mathematical problems, which is ideal for robotic 

kinematics. Its integrated visualization tools facilitate data analysis and the extraction of critical 

information [3]. Simulink, in turn, complements Matlab by providing a block diagram 

environment for multi-domain simulation. It allows for graphical modeling of dynamic systems, 

offering customizable libraries and differential equation solvers that accelerate the design and 

verification process [4]. Simulink's ability to handle complex systems makes it a standard tool in 

control engineering [5]. 

https://wireilla.com/ijitca/vol15.html
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Additionally, the project incorporates computer vision for the detection and tracking of key 

elements in the robot's environment. For this purpose, OpenCV (Open Source Computer Vision 

Library) will be used, a robust open-source library widely employed in areas like facial 

recognition and object identification [6]. Computer vision is crucial for endowing robots with 

autonomy and the ability to interact intelligently with their surroundings [7]. Integrating OpenCV 

will enable the robot to perceive its environment, which is crucial for applications requiring 

dynamic interaction with external elements, such as tracking a moving sphere. 

 
The following sections will detail the mathematical development for obtaining the inverse 

kinematics equations of the planar ball-plate robot. Subsequently, we'll explain how the robot 

model was exported to Simulink and configured for simulation. Finally, we'll present and analyze 

the results obtained from both the robot simulation and real-time image processing, 

demonstrating the feasibility and accuracy of the proposed approach. 

 

2. INVERSE KINEMATICS 
 

To obtain the equations, we must consider Figure 1, which shows a simplified model of the robot 

to facilitate its analysis. 
 

 
 

Figure 1. Simplified robot model 

 

As shown in Figure 1, the values to be found for inverse kinematics are θ of each arm, 

considering the vector n as the sphere's location and that it's normal to the mobile platform. For 

inverse kinematics calculations, the equilateral triangular base shown in Figure 2 must be 

considered. Kinematic analysis is a fundamental step in the design of any robotic manipulator [8]. 
To find the y-coordinates of points b0 and c0 in Figure 2, Equation 1 and Equation 2 are used, 

which correspond to the circumradius and apothem in an equilateral triangle, respectively: 

 

 
 

Figure 2. Robot fixed base 



International Journal of Information Technology, Control and Automation (IJITCA) 

Vol.15, No.1/2/3/4, October 2025 

3 

r=
l⋅√3

3          Equation 1 

ay=
l⋅√3

6          Equation 2 
 

Solving for l from Equation 1, where r=d, and rationalizing, gives 

 

l=√3⋅d          Equation 3 
 

Substituting the result of Equation 3 into Equation 2, and solving, 

 

ay=
l
2
⋅d

         Equation 4 
Therefore, by and cy will be equal to the result of Equation 4 

 

by=
l
2
⋅d , cy=

l
2
⋅ d

        Equation 5 
 

To find the x-coordinates of points b0 and c0, the value of the side calculated in Equation 3 must 

be halved, 

 

bx=
√3⋅d

2
, cx=−

√3⋅ d
2        Equation 6 

 

As a result, points a0, b0, and c0 correspond to, 

 

a0= (ax ,ay ,az)= (0,− d ,0)

b0= (bx ,by ,bz)= (
√3

2
⋅ d ,

1

2
d,0)

c0= (cx ,cy , cz)= (
√3

2
⋅ d,

1

2
d,0)

      Equation 7 
 

The mobile platform, like the base, is also an equilateral triangle as shown in Figure 3, where the 

center point is given by the coordinates of variable h, with hz being a known user-provided value. 

Parallel robots often use triangular platform and base configurations due to their structural and 

kinematic advantages [9]. 
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Figure 3. Robot mobile platform 

 

To find the coordinates of points af, bf, and cf of the platform, we cannot follow the same method 

as for the base, because the platform's movement must be taken into account, leading to the 

model shown in Figure 4. 

 

 
 

Figure 4. Robot in "Home" state 

 

Considering Figure 4 and the robot's position as the "Home" state, the values of vector n are: <nx, 

ny, 1>. The next step is to adapt the results of Equation 7 with the platform's values, taking the x 

and y coordinates as fixed, resulting in the following: 

 

af= (afx ,afy ,afz)= (0,− e,afz)

bf= (bfx ,bfy ,bfz)= (
√3

2
⋅e,

1

2
e,bfz)

cf= (cfx , cfy , cfz)= (
√3

2
⋅e,

1

2
e,cfz)

      Equation 8 
 

Finally, with the data obtained in Equation 8, the z-coordinates of the points are found using 

Equation 9, where x is the point a, b, or c to be found. 

 
n⃗= P⃗f x          Equation 9 

 

To find vector (Pfx), the coordinates of point x are subtracted from the coordinates of point Pf, in 

this case x=af. 
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⃗Pf af= (0 ,− e,az)= (0,0 ,hz)

⃗Pf af= ⟨0− 0,− e− 0,az− hz⟩

⃗Pf af= ⟨0,− e,az− hz⟩       Equation 10 
 

Substitute the value from Equation 10 into Equation 9 

 

n⃗⋅ ⃗Pf af= ⟨nx ,ny ,1⟩⋅ ⟨0,− e,az− hz⟩

n⃗⋅ ⃗Pf af= nx⋅0− e+1⋅ az− hz
n⃗⋅ ⃗Pf af=− eny+az− hz       Equation 11 

Equating the result of Equation 11 to 0, and solving for a_z, 

 
− eny+hz= 0

az= hz+eny          Equation 12 
 

Equation 12 rules the az coordinate for any point in the platform's movements. Repeat the 

procedure from Equation 10 to Equation 12, changing the values for b and c, obtaining the results 

shown in Equation 13: 

 
az= hz+eny

bz= hz−
e

2
(√3⋅ nx+ny)

cz= hz+
e

2
(√3⋅ nx− ny)

       Equation 13 
 

To find the x-coordinates of points b and c, use the blue right triangle shown in Figure 5 as a 

reference. 

 

 
 

Figure 5. Blue triangle 
 

As shown in Figure 5, the center of the mobile platform should be taken as the origin to obtain 

the coordinates of b0 and the end of the vector perpendicular to it. The results are shown in 

Equation 14: 
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bf= ⟨
√3

2
,
1

2
,0⟩

⊥bf= ⟨
1

2
,−
√3

2
,0⟩

        Equation 14 
With the data obtained in Equation 14, express bfx in terms of bfy: 

 

1

2
bf−
√3

2
bfy= 0

bfx=√3⋅bfy         Equation 15 
 

Therefore, 

 

cfx=−√3⋅ cfy          Equation 16 
 

Taking into account the values obtained in Equation 13, Equation 15, and Equation 16, the 

platform points are as shown in Equation 17: 

 

af= (afx ,afy ,afz)= (0,afy ,hz+eny)

bf= (bfx ,bfy ,bfz)= (√3⋅ bfy ,bfy ,hz−
e

2
(√3⋅ nx+ny))

cf= (c fx ,c fy ,c fz)= (− √3⋅ cfy ,cfy ,hz+
e

2
(√3⋅ nx− ny))

    Equation 17 
 

Figure 6 shows the behavior of the cross product of vectors a and b in space. 

 

 
 

Figure 6: Cross product diagram of a and b 

 

According to Figure 6, Equation 18 is deduced: 

 

a× b= (‖a‖‖b‖ sen(θ )) n⃗        Equation 18 
 

Where vec(n) is the unit vector orthogonal to vectors a and b. To apply Equation 18, vectors a 

and b will be those shown in blue in Figure 7. 
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Figure 7. Vectors a and b on the platform 

 

Equation 19 shows the magnitudes of vectors a and b. 

 

‖ ⃗bf− af‖=√3⋅e

‖ ⃗cf− af‖=√3⋅e
        Equation 19 

 

Therefore, Equation 18 with the obtained values is shown in Equation 20: 

 
⃗bf− af× ⃗cf− af= (√3e⋅√3e⋅ sen(60° ))n⃗

⃗bf− af× ⃗cf− af=
3√3e

2

2
n⃗

⃗bf− af× ⃗cf− af= ω n⃗
     Equation 20 

 

where 
ω=

3√3e
2

2  

 

From Equation 20, we proceed to find the values of the vectors by subtracting the coordinates of 

the points from Equation 17, obtaining the results shown in Equation 21: 

 
⃗bf− af ⟨√3bfy,bfy− afy ,bfz− afz⟩

⃗cf− af= ⟨−√3cfy ,cfy− afy ,cfz− afz⟩       Equation 21 
 

With the values from Equation 21, we obtain, 

 

ω n⃗=[
î ĵ k̂

√3bfy bfy− afy t

− √3cfy c fy− afy v]
      Equation 22 

 

The values for t and v are shown in Equation 23: 
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t= bfz− afz
v= cfz− afz          Equation 23 

 

For practical purposes, we will solve it part by part, starting with vec (j) and solving for cfy, 

obtaining the result shown in Equation 24: 

 

ωny=− √3tcfy− √3vbfy
ω ny

−√3
= tcfy+vbfy

cfy=

ωny

− √3
− vbfy

t        Equation 24 
 

We will then proceed to solve vec(k) by solving for afy. The result is shown in Equation 25: 

 

ωnz=−√3bfy(cfy− afy)− (bfy− afy)(−√3cfy)

ω nz= √3(bfyc fy− afybfy+bfycfy− cfyafy)

ω nz= √3(2bfycfy− afybfy− cfyafy)

ωnz

√3
= 2bfycfy− afy(bfy+cfy)

− afy=

ω nz

√3
− 2bfycfy

bfy+cfy  

afy=

2bfycfy−
ωnz

√3

bfy+cfy         Equation 25 
Finally, we will solve for the value of i: 

 

ωnx= v(bfy− afy)− t (cfy− afy)

ωnx= vbfy− vafy− tcfy− tafy
ωnx= vbfy− tcfy+afy(t− v)

      Equation 26 
 

Substitute the value of cfy obtained in Equation 24 and the value of afy obtained in Equation 25 

into Equation 26, then solve for bfy. Equation 27 shows the result. 

 

bfy=
e

2(1+
nx

2
+√3nxny

nz+1 )
       Equation 27 

 

The result of Equation 27 is substituted into Equation 24, 
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cfy=
e

2(1−
nx

2
+√3nxny

nz+1 )
       Equation 28 

 

Lastly, the results of Equation 27 and Equation 28 are substituted into Equation 25, 

 

afy=
e

2(1− nx
2
+3nz

2
+3nz

nz+1− nx
2

+
nx

4
− 3nx

2
ny

2

(nz+1)(nz+1− nx
2
))

    Equation 29 
 

Therefore, the inverse kinematics equations are as follows: 

 
Arm A Angle 

ay= d+(e2)(1−
nx

2
+3nz

2
+3nz

nz+1− nx
2

+
nx

4
− 3nx

2
ny

2

(nz+1)(nz+1− nx
2
))

az= hz+eny

am=√ay
2
+az

2

θ a= arccos(
ay

am)+arccos(am
2
+f

2
− g

2

2am f )
   Equation 30 

 
 

Arm B Angle 

bx=
√3

2 (e(1− nx
2
+√3nxny

nz+1 )− d)
by=

bx

√3

bz= hz−
e

2
(√3nx+ny)

 

bm=√bx2+by
2
+bz

2

θ b= arccos(√3bx+by
− 2bm )+arccos(bm

2
+ f

2
+g

2

2bmf )
    Equation 31 

 

Arm C Angle 
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cx=
√3

2 (d− e(1− nx
2
+√3nxny

nz+1 ))
cy=

− cx

√3

cz= hz+
e

2
(√3nx+ny)

cm= √cx
2
+c y

2
+cz

2

θ c= arccos(√
3cx+cy
2cm )+arccos(cm

2 + f 2− g2

2cm f )
    Equation 32 

 

3. ROBOT DESIGN 
 

With the inverse kinematics data obtained, the SolidWorks model, identical to the physical 

construction, is created, as seen in Figure 8. 
 

 
 

Figure 8. Final robot design 

 

For simulation purposes, a simplified design model is needed without compromising 

functionality. Based on Figure 8, the simplified SolidWorks model is shown in Figure 9. 
 

 
 

Figure 9. Simplified robot model 
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3.1. Design to XML 
 

To work with the simulation in Matlab, the simplified model needs to be exported as an XML file 

using the Simscape Multibody Link tool, which can be installed from its official website [10]. 

Integrating CAD tools with simulation environments is crucial for validating complex designs 

and optimizing processes [11]. Once installed, navigate to "Tools" → "Simscape Multibody link" 

→ "Export" → "Simscape Multibody". 

 
In Matlab, once the folder where the XML file was exported is set as the current folder, execute 

the smimport() command in the Command Window, changing the file name to the one chosen in 

the previous step. 

 

3.2. Block Diagram Configuration 
 

Executing the command from Section 3.1 will open a Simulink document where blocks represent 

the model's parts, as shown in Figure 10. 
 

 
 

Figure 10: Block diagram created by Simscape 

 

Although the tool facilitates block diagram creation in the Simulink file, some subsequent 

changes must be made, starting with the Mechanism Configuration block, by applying gravity 

along the Z-axis. 
 

To simulate the sphere's movement on the platform, there's a library called ContactForce that can 

be installed by following the instructions on its official website [4]. Once the library is installed, a 

new section called Simscape Multibody Contact Forces Library appears in the browser. Within 

the 3D section, you'll find the necessary block. In Figure 11, you can see where the Sphere to 

Plane Force block is placed to emulate the contact of the sphere with the platform during the 

simulation. 
 

 
 



International Journal of Information Technology, Control and Automation (IJITCA) 

Vol.15, No.1/2/3/4, October 2025 

12 

Figure 11. Diagram with the Sphere to Plane Force block added 

 

For the Sphere to Plane Force block to know the platform and ball measurements, its default 

configuration must be changed. For the Sphere to Plane Force block to function correctly in the 

simulation, a Transform block must be added. Its configuration values are shown in Code 1 and 

must be added to the DataFile generated in Section 3.1. 
 

Code 1. Transform Block Data 

 
smiData.RigidTransform(20).translation = [ -6.9404293441236247 -
106.4984593676447 117.98887768247265]; 
smiData.RigidTransform(20).angle = 0; 
smiData.RigidTransform(20).axis = [0 0 0]; 
 

Finally, a 6DOF block will be added, connected to the Transform block and the Sphere to Plane 

Force block. The complete diagram is shown in Figure 12. 
 

 
 

Figure 12. Diagram with Transform and 6DOF blocks 

 

4. PLANAR BALL-PLATE ROBOT SIMULATION 
 

With the values obtained in Section 3.1, the diagram in Figure 16 from the previous section will 

be modified. In Figure 13, a subsystem was added containing the blocks that simulate the robot. 

The trajectory block has a clock as input and contains Code 2. 
 

 
 

Figure 13. Connection of Simulink subsystems with the simplified planar ball-plate robot model 

The code entered in the Trajectory block presents the circular behavior desired for this project, which can 

be seen in Code 2. 
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Code 2. Circular Trajectory 

 
function [x, y, z] = fcn(t) 
nx = 0.10 * cos (t); 
ny = 0.10 * sin (t); 
nm = sqrt (nx ^2 + ny ^2 + 1); 
x = nx / nm; 
y = ny / nm; 
z = 1/ nm; 
end 
 

Now the inverse kinematics block contains Code 3, which is essentially the result of the 

procedure described in Section 2 of this document for inverse kinematics. 

 
Code 3: Inverse Kinematics 

 
function [ theta_A , theta_B , theta_C ] = fcn(x, y, z) 
theta_A = Brazo_A (x, y, z); 
theta_B = Brazo_B (x, y, z); 
theta_C = Brazo_C (x, y, z); 
end 
 

As seen in Code 3, separate functions are called. These functions contain Equation 30, Equation 

31, and Equation 32. 

 

5. COMPUTER VISION 
 

Computer vision, also known by other names such as artificial vision or image interpretation, is a 

discipline that seeks the automatic deduction of the structure and properties of a three-

dimensional scenario or world, possibly changing, from one or more captured images. Regarding 

the images, these can be black and white or color, captured by a single camera or several 

associated, or even, in a greater degree of generalization of the image concept, come from non-

visual sensors such as acoustic, thermal, tactile, among others [7]. 

 

5.1. Platform Detection 
 

For platform detection, the OpenCV library will be used through its color detection function, all 

programmed in Python. Something to keep in mind is that usually the integrated camera of 

laptops has the number 0, and an external webcam can vary this number; in this particular case, 

it's number 2 and is configured using the code: cap = cv2.VideoCapture(2). Color segmentation is 

a fundamental technique in image processing for object identification [12]. 

 
The definition of color detection values is done considering that HSV colors are used. For this 

case, the blue color spectrum will be used, and to define it through code, it's necessary to declare 

them using NumPy arrays, as shown in Code 4. 

 
Code 4. Color Spectrum Definition 

 
azulBajo = np.array([100, 10, 100], np.uint8) 
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azulAlto = np.array([130, 255, 255], np.uint8) 
 

By default, OpenCV processes the camera image in a BGR color scheme. Therefore, the first step 

is to convert this scheme to an HSV type, using that frame to start the color search, and 

subsequently find the contour of objects within that color range. This procedure is shown in Code 

5. 
 

Code 5. Mask Creation and Contour Search 
 
frameHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 
maskAzul = cv2.inRange(frameHSV, azulBajo, azulAlto) 
contornos, _ = cv2.findContours(maskAzul, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_SIMPLE) 
 

What is done in Code 6 is to calculate the area of the detected zone, and if it's greater than 3000, 

proceed to find the center of that area and draw a point to identify it. The cv2.putText function 

places the coordinates of that point, taking the entire camera's field of view as a reference. The 

cv2.ConvexHull() function smooths the contour to make it appear more uniform, and the last line 

draws that contour on the original frame. 

 
Code 6. Drawing Contour in Detected Area 

 
for c in contornos: 
    area = cv2.contourArea(c) 
    if area > 3000: 
        M = cv2.moments(c) 
        if (M["m00"] == 0): M["m00"] = 1 
        x = int(M["m10"] / M["m00"]) 
        y = int(M["m01"] / M["m00"]) 
        cv2.circle(frame, (x, y), 7, (0, 255, 0), -1) 
        font = cv2.FONT_HERSHEY_SIMPLEX 
        cv2.putText(frame, "{},{}".format(x, y), (x + 10, y), font, 
0.75, (0, 255, 0), 1, cv2.LINE_AA) 
        nuevoContorno = cv2.convexHull(c) 
        cv2.drawContours(frame, [nuevoContorno], 0, (255, 0, 0), 3) 

 

5.2. Ball Detection 
 

For detecting the ball on the platform, Hough Circle detection [13] will be used. The function in 

Code 7 first converts the image obtained by the camera to grayscale, then applies a blur effect to 

reduce background noise. Finally, the HoughCircles function is responsible for finding these 

circles. Important parameters include 100, referring to the minimum distance between two 

possible circles; param1 is the sensitivity for circle detection; param2 indicates after how many 

detected points a circle can be considered; and minRadius and maxRadius define the minimum 

and maximum radii for circles to be detected. Subsequently, the center of the detected circles is 

identified and drawn. 

 
Code 7: Creating Distorted Frame and Center Location 

 
grayFrame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 
blurFrame = cv2.GaussianBlur(grayFrame, (17, 17), 0) 
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circles = cv2.HoughCircles(blurFrame, cv2.HOUGH_GRADIENT, 1.2, 100, 
                          param1=100, param2=30, minRadius=75, 
maxRadius=400) 
if circles is not None: 
    circles = np.uint16(np.around(circles)) 
    chosen = None 
    for i in circles[0, :]: 
        if chosen is None: chosen = i 
        if prevCircle is not None: 
            if dist(chosen[0], chosen[1], prevCircle[0], prevCircle[1]) 
<= \ 
               dist(i[0], i[1], prevCircle[0], prevCircle[1]): 
                chosen = i 
        cv2.circle(frame, (chosen[0], chosen[1]), 1, (0, 100, 100), 3) 
        cv2.putText(frame, "{},{}".format(chosen[0], chosen[1]), 
(chosen[0] + 10, chosen[1]), font, 0.75, (0, 255, 0), 1, cv2.LINE_AA) 
        cv2.circle(frame, (chosen[0], chosen[1]), chosen[2], (255, 0, 
255), 3) 
        prevCircle = chosen 
 

6. RESULTS 
 

Below are the results obtained from the simulation and image processing for the platform and 

ball. We describe how Matlab and Simulink were used to model the system's behavior and verify 

the inverse kinematics equations, as well as the use of computer vision algorithms to detect key 

elements. We also analyze the graphs comparing the ideal and actual trajectories. 

 
In Figure 14, the 3D simulation is shown, where the sphere's entire behavior can be visually 

observed, with the advantage of being able to obtain result data by leveraging the full power of 

Matlab and Simulink tools. 

 

 
 

Figure 14. Simulink simulation view 
 

To test the robot's behavior using the equations obtained in Section 2 and due to the limitation of 

adding a camera in Simulink, a PID block was added as feedback to achieve more realistic robot 

behavior during the simulation. PID controllers are widely used in control engineering for their 

effectiveness and simplicity [14]. Using a circular trajectory, Figure 15a shows the graph of the 

ideal trajectory programmed in the simulation. In Figure 15b, the graph of the actual trajectory 
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obtained after the simulation finished and starting with the ball at the center of the platform can 

be observed. As seen in both graphs of Figure 15, the trajectories are practically identical, 

demonstrating that the inverse kinematics equations are fulfilling their function of adequately 

moving the arms depending on the ball's location. 
 

 
 

Figure 15. Comparison of ideal (a) and real (b) trajectory 

 

As shown in Section 5, part of the code used to detect the platform and ball separately was 

explained. In Figure 16a, a window showing the platform detection is visible, displaying the 

coordinates of the platform's center relative to the camera's entire field of view. Meanwhile, 

Figure 16b shows the ball detection along with its respective center coordinates. 
 

 
 

Figure 16. Platform (a) and sphere (b) detection 

 

The combined result of both codes can be seen in Figure 17. The coordinates of the platform's 

center point were hidden to improve visibility; however, a green reference point is still shown. 

The displayed coordinates are those of the ball's center (black dot) with respect to the platform's 

center point (green dot), and these coordinates will serve as input for the inverse kinematics 

equations in Section 2. 
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Figure 17. Final computer vision result applied to sphere and platform 

 

7. CONCLUSIONS 
 

This work successfully addressed the derivation of inverse kinematics equations for a planar ball-

plate robot, a fundamental step for its precise control. We demonstrated the feasibility of 

integrating Matlab and Simulink for the dynamic modeling and simulation of the robot, allowing 

us to validate its behavior before any physical implementation. The 3D simulation in Simulink, 

complemented by a PID controller, confirmed the accuracy of our equations by achieving nearly 

identical simulated and desired sphere trajectories. 
 

Additionally, the implementation of computer vision using OpenCV proved effective for real-

time platform and sphere detection and tracking. The ability to obtain the coordinates of these 

elements is crucial for closing the control loop, as these coordinates can be used as input for the 

inverse kinematics equations, enabling adaptive visual control of the robot. 

 
In summary, this project lays the groundwork for developing a robust control system for the 

planar ball-plate robot, combining the precision of inverse kinematics with visual feedback. The 

methodologies employed and the results obtained validate the proposed approach, opening the 

door for future research in active control and practical applications. 
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