International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

OBTAINING INVERSE KINEMATICS EQUATIONS FOR
A PLANAR BALL-PLATE ROBOT

Ricardo Francisco Martinez-Gonzalez, Jos¢é Antonio Hernandez-Reyes and
Guillermo Sanchez-Vazquez

Tecnoldgico Nacional de México - IT Veracruz, Veracruz, Veracruz, Mexico

ABSTRACT

This work focuses on the derivation and validation of inverse kinematics equations for a planar ball-plate
robot, a critical step for its precise control. The robot's kinematic model was developed considering a
simplified equilateral triangular base and mobile platform. We detail the mathematical procedures for
determining the z-coordinates of the platform's points and establishing the unit vector normal to the
platform, which are fundamental for the inverse kinematics solution. The derived equations allow for the
calculation of the joint angles necessary to achieve a desired ball position on the plate.

For modeling and simulation, Matlab and Simulink were utilized. The robot's SolidWorks design was
exported to Simulink using the Simscape Multibody Link tool, and a PID controller was integrated to
achieve realistic simulated behavior. Simulation results demonstrate that the derived inverse kinematics
equations accurately guide the robot, with the simulated ball trajectory closely matching the desired
circular path. Furthermore, computer vision techniques, implemented with OpenCV in Python, were
employed for real-time detection and tracking of both the platform and the ball. This visual feedback
system provides crucial positional data, allowing for the potential closure of the control loop for adaptive
visual control. This project successfully combines precise inverse kinematics with visual feedback, laying a
robust foundation for advanced control systems in planar ball-plate robots.

KEYWORDS

Inverse Kinematics, Ball-Plate Robot, Computer Vision

1. INTRODUCTION

The field of robotics demands a deep understanding of the interplay between mechanical design
and computational control [1]. This work focuses on deriving the inverse kinematics equations
for a specific type of manipulator: a planar ball-plate robot. These equations are fundamental for
controlling a robot's position and orientation, allowing the determination of the joint movements
needed to reach a desired point in space [2].

For modeling and simulation of this robotic system, Matlab and its simulation environment,
Simulink, were chosen. Matlab, with its matrix-based approach, offers an intuitive and efficient
platform for expressing and solving complex mathematical problems, which is ideal for robotic
kinematics. Its integrated visualization tools facilitate data analysis and the extraction of critical
information [3]. Simulink, in turn, complements Matlab by providing a block diagram
environment for multi-domain simulation. It allows for graphical modeling of dynamic systems,
offering customizable libraries and differential equation solvers that accelerate the design and
verification process [4]. Simulink's ability to handle complex systems makes it a standard tool in
control engineering [5].

DOI:10.5121/ijitca.2022.15401 1

https://wireilla.com/ijitca/vol15.html
https://wireilla.com/ijitca/vol15.html
https://doi.org/10.5121/ijitca.2022.15401

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

Additionally, the project incorporates computer vision for the detection and tracking of key
elements in the robot's environment. For this purpose, OpenCV (Open Source Computer Vision
Library) will be used, a robust open-source library widely employed in areas like facial
recognition and object identification [6]. Computer vision is crucial for endowing robots with
autonomy and the ability to interact intelligently with their surroundings [7]. Integrating OpenCV
will enable the robot to perceive its environment, which is crucial for applications requiring
dynamic interaction with external elements, such as tracking a moving sphere.

The following sections will detail the mathematical development for obtaining the inverse
kinematics equations of the planar ball-plate robot. Subsequently, we'll explain how the robot
model was exported to Simulink and configured for simulation. Finally, we'll present and analyze
the results obtained from both the robot simulation and real-time image processing,
demonstrating the feasibility and accuracy of the proposed approach.

2. INVERSE KINEMATICS

To obtain the equations, we must consider Figure 1, which shows a simplified model of the robot
to facilitate its analysis.

Figure 1. Simplified robot model

As shown in Figure 1, the values to be found for inverse kinematics are 0 of each arm,
considering the vector n as the sphere's location and that it's normal to the mobile platform. For
inverse kinematics calculations, the equilateral triangular base shown in Figure 2 must be
considered. Kinematic analysis is a fundamental step in the design of any robotic manipulator [8].
To find the y-coordinates of points by and co in Figure 2, Equation 1 and Equation 2 are used,
which correspond to the circumradius and apothem in an equilateral triangle, respectively:

Co

i)[;

[en)

Figure 2. Robot fixed base

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

r: —_—
3 Equation 1
_I\B
a=-—
6 Equation 2
Solving for I from Equation 1, where r=d, and rationalizing, gives
1=~ d Equation 3
Substituting the result of Equation 3 into Equation 2, and solving,
=1
2 Equation 4
Therefore, by and ¢, will be equal to the result of Equation 4
b=4d, ¢=2d
Equation 5

To find the x-coordinates of points by and co, the value of the side calculated in Equation 3 must
be halved,

_d __Bd
2 2

X , CF
Equation 6
As a result, points ao, bo, and ¢y correspond to,
27 (a,.8,,a)=(0,-d,0)
_ 8 1
b= (b, by b,)= (5 d, 2d 0)
Co=(C,,C,, €)= (% §d 0)
Equation 7

The mobile platform, like the base, is also an equilateral triangle as shown in Figure 3, where the
center point is given by the coordinates of variable h, with h, being a known user-provided value.
Parallel robots often use triangular platform and base configurations due to their structural and
kinematic advantages [9].

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

Figure 3. Robot mobile platform

To find the coordinates of points as, by, and c¢ of the platform, we cannot follow the same method
as for the base, because the platform's movement must be taken into account, leading to the
model shown in Figure 4.

)
Figure 4. Robot in "Home" state

Considering Figure 4 and the robot's position as the "Home" state, the values of vector n are: <nx,
ny, 1>. The next step is to adapt the results of Equation 7 with the platform's values, taking the x
and y coordinates as fixed, resulting in the following:

a (afx1afy’afz) \(g e, afz)
b= (by,, by, by,)= (7 E e, by,)
1
C (Cfx’ ny’ sz) f e, 26 sz)

Equation 8

Finally, with the data obtained in Equation 8, the z-coordinates of the points are found using
Equation 9, where x is the point a, b, or ¢ to be found.

n=Px Equation 9

To find vector (Pfx), the coordinates of point x are subtracted from the coordinates of point Py, in
this case x=ay.

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

Pa,=(0,~ e,a,)=(0,0,h,)
P.a=(0-0,-e-0,a- h,)

Pra=(0,-e,a,- h,) Equation 10

Substitute the value from Equation 10 into Equation 9

i P;a=(n,n,1y(0,-e,a~h,)
nPa=n;0-etta,- h,
nPa=- en+a,- h, Equation 11
Equating the result of Equation 11 to 0, and solving for a_z,

-en,+h=0

=h+
a;= h.+en, Equation 12

Equation 12 rules the a, coordinate for any point in the platform's movements. Repeat the
procedure from Equation 10 to Equation 12, changing the values for b and c, obtaining the results
shown in Equation 13:

aF= h,*en,
e
bz= hz_ E(\E nx+ny)

e
C= hz+§(\§ n-=n,) .
Equation 13

To find the x-coordinates of points b and c, use the blue right triangle shown in Figure 5 as a
reference.

Figure 5. Blue triangle

As shown in Figure 5, the center of the mobile platform should be taken as the origin to obtain
the coordinates of by and the end of the vector perpendicular to it. The results are shown in
Equation 14:

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

(B 1
2 "2 /0
b= <1,— lé,O)
2 2 Equation 14
With the data obtained in Equation 14, express by in terms of bgy:
1B =0
271 27

bfx= ’\E' bfy

Equation 15

Therefore,

-\Bgcy

Equation 16

Taking into account the values obtained in Equation 13, Equation 15, and Equation 16, the
platform points are as shown in Equation 17:

a= (a,,8y,8,)= (0,8, h,ten)

b= (by, by, D)= (B by, by, b~ \E ngn,)

Ci= (Cfx’ny’sz \JBny’ny’ z 2 \En n Equation 17
u

Figure 6 shows the behavior of the cross product of vectors a and b in space.

a X b
n

D

Figure 6: Cross product diagram of a and b

According to Figure 6, Equation 18 is deduced:

ax b= (1l bl sen(8))h Equation 18

Where vec(n) is the unit vector orthogonal to vectors a and b. To apply Equation 18, vectors a
and b will be those shown in blue in Figure 7.

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

Figure 7. Vectors a and b on the platform

Equation 19 shows the magnitudes of vectors a and b.

Ib,~ all=\B e

le,2 all=~Be Equation 19

Therefore, Equation 18 with the obtained values is shown in Equation 20:

b~ ax ¢,> a=(\Be \Be sen(60°))7

Equation 20

_ 3¢

W=

where

From Equation 20, we proceed to find the values of the vectors by subtracting the coordinates of
the points from Equation 17, obtaining the results shown in Equation 21:

by~ af<\ébfy7 bfy_ ay,, b,-a)
Cr— 8= (~ \chy’ Cy~ 8, Cr,~ 8p)

Equation 21
With the values from Equation 21, we obtain,
/ 7k
wh=| \B b, b,~a, t
- - "4
\E v o~ 8y Equation 22

The values for t and v are shown in Equation 23:

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

t= bfz_ a,«z
V=C,— a .
fo Ch Equation 23

For practical purposes, we will solve it part by part, starting with vec (j) and solving for cfy,
obtaining the result shown in Equation 24:

wn=- \Btcfy— \B vby,
n
—\Ew £= tcy+ by,
-

wn

—_'\é}; - bey

Equation 24

We will then proceed to solve vec(k) by solving for ag. The result is shown in Equation 25:

wn,= = \Bby,(Cy~ ay)~ (by~ ay)(- \Bcy)
wn,= \ﬁ(b yCr~ @y byt by i Cpap)
wn,= \é(benyy ay, by~ Cyay)

wn,
,_\}?= 2 bfy ny_ afy(bfy+ ny)

wn,

Tﬁ*_ 2bfnyy

—a_
W by *+Cy

wn,
2 bfy ny_ T}?

ay=
+
by *Cy Equation 25
Finally, we will solve for the value of i:
wn= v(b afy) t(c,— ay)
wn,= vb,~ tc,+a, (t- v
X v Ty Ty () Equation 26

Substitute the value of cg, obtained in Equation 24 and the value of ag obtained in Equation 25
into Equation 26, then solve for bg,. Equation 27 shows the result.

b =81+ 2\zgnn
v o\ A1

The result of Equation 27 is substituted into Equation 24,

Equation 27

International Journal of Information Technology, Control and Automation (IJITCA)

Vol.15, No.1/2/3/4, October 2025
f+\Bn,n
C. = 9(1— X T Xy y)

fy— +
2 n+1 Equation 28

Lastly, the results of Equation 27 and Equation 28 are substituted into Equation 25,

4_
. _9(1_ +3rfa3n, r-3rir)

"2\ - (na)na1-) o
quation

Therefore, the inverse kinematics equations are as follows:

Arm A Angle

2 2 4 o 2 2
5 =d+(§ 1- nX+3nz+3nZ+ ne—3nyn,
’ 2 nH1=rm (A1) (n+1-rm)

a;= hren,
2

8= vt
2, £2_
0 .= arccos % Varccos M
a, 2a,f

Arm B Angle

Equation 30

bz= hz_ g(\é nX+ n}’)

b= \E+ b
\Bb +b bl + o+ g
= X Ty _m _ 9
Gb arccos(_2bm)#arccos(mef)

Arm C Angle

Equation 31

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

2
oo Do of- Torbnn)
2 n,+1

c~= hz+g (\ﬁnx+ n,)
Co= o Co+C,
\Be+c, c+f- g
Gc—arccos(2)»ar (2c)

Equation 32

3. ROBOT DESIGN

With the inverse kinematics data obtained, the SolidWorks model, identical to the physical
construction, is created, as seen in Figure 8.

Figure 8. Final robot design

For simulation purposes, a simplified design model is needed without compromising
functionality. Based on Figure 8, the simplified SolidWorks model is shown in Figure 9.

Figure 9. Simplified robot model

10

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

3.1. Design to XML

To work with the simulation in Matlab, the simplified model needs to be exported as an XML file
using the Simscape Multibody Link tool, which can be installed from its official website [10].
Integrating CAD tools with simulation environments is crucial for validating complex designs
and optimizing processes [11]. Once installed, navigate to "Tools" — "Simscape Multibody link"
— "Export" — "Simscape Multibody".

In Matlab, once the folder where the XML file was exported is set as the current folder, execute
the smimport() command in the Command Window, changing the file name to the one chosen in

the previous step.

3.2. Block Diagram Configuration

Executing the command from Section 3.1 will open a Simulink document where blocks represent
the model's parts, as shown in Figure 10.

d § 4
World B “) F F F1 8 N) F} F Fl Baesy F!
| | T
BRAZOA Eslabon1_3_RIGID Revolute5 Eslaben2_3_RIGID Spherical2
’ 4 ¥ ¥ ¥ "
“%C * 8'7_{).F F3 F1 B'SY F F F1 B'Sy F F F1 B\Y—'F F1 F3 F
-l ’ F | | E
Transform Base_abajo_1_RIGID BRAZOB Eslaboni_2 RIGID Revolute4 Eslabon2_2_RIGID Sphericall | Plataforma_1_RIGID ball_1_RIGID

fix)=0

; at
B-\)F F Fi B-‘zr F F s F
| | T

BRAZOC Eslabon1_1_RIGID Revolule3 Eslabon2_1_RIGID Spherical

Figure 10: Block diagram created by Simscape

Although the tool facilitates block diagram creation in the Simulink file, some subsequent
changes must be made, starting with the Mechanism Configuration block, by applying gravity
along the Z-axis.

To simulate the sphere's movement on the platform, there's a library called ContactForce that can
be installed by following the instructions on its official website [4]. Once the library is installed, a
new section called Simscape Multibody Contact Forces Library appears in the browser. Within
the 3D section, you'll find the necessary block. In Figure 11, you can see where the Sphere to
Plane Force block is placed to emulate the contact of the sphere with the platform during the
simulation.

' ol at
B #r F F1 B yr FoOF1 @ r
L | i L4l
World BRAZOA Eslabon1_3 RIGID Revolute5 Eslabon2_3 RIGID Spherical2
r 1 T2 1 2 o
A y f § [et
i e SR F3 F1 88y F F1 &Y £ FoEl 5@ F F1 F3 PlaB P
£ : F . | | F
Transform Base_abajo_1_RIGID | BRAZOB Eslaboni_2 RIGID Revoluted Eslabon2_2_RIGID Spherical1 | Plataforma_1_RIGID bal_1_RIGID
¥ y C
f(x)=0 &Y F F F1 88y Fl FoF 5@ Fl
I |

BRAZOC Eslabon1_1_RIGID Revolute3 Eslabon2_1_RIGID Sphen’ca\.

11

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025
Figure 11. Diagram with the Sphere to Plane Force block added

For the Sphere to Plane Force block to know the platform and ball measurements, its default
configuration must be changed. For the Sphere to Plane Force block to function correctly in the
simulation, a Transform block must be added. Its configuration values are shown in Code 1 and
must be added to the DataFile generated in Section 3.1.

Code 1. Transform Block Data

smiData.RigidTransform(20).translation = [-6.9404293441236247 -
106.4984593676447 117.98887768247265];

smiData.RigidTransform(20).angle = 0;

smiData.RigidTransform(20).axis = [0 @ 0];

Finally, a 6DOF block will be added, connected to the Transform block and the Sphere to Plane
Force block. The complete diagram is shown in Figure 12.

t
B ‘7< Fi B 8
Transform1 SixDOF \? \/) at
k\N 4 B8y F F Fl B8 F F F1 B F
| | T
World BRAZOA Eslaboni_3_RIGID Revolute5 Eslabon2_3_RIGID Spherical2
3 F2 y -] out @
'“‘sc- +1fs ‘7<F F3 Fi B :\7F FoOFl B N)F- F A B Fi Fi F3 Plag SphF o F
F | I F
TransformBase_abajo_1_RIGID BRAZOB Eslaboni_2_RIGID Revoluted Eslabon2_2_RIGID Sphericall | Plataforma_1_RIGID ball_1_RIGID
- 4 d P 4
fx)=0 8 #F FooFl 8 “)F FFl By Fi
| | T

BRAZOC Eslaboni 1 RIGID Revolute3 Eslabon 1 RIGID Spherical

Figure 12. Diagram with Transform and 6DOF blocks

4. PLANAR BALL-PLATE ROBOT SIMULATION

With the values obtained in Section 3.1, the diagram in Figure 16 from the previous section will
be modified. In Figure 13, a subsystem was added containing the blocks that simulate the robot.
The trajectory block has a clock as input and contains Code 2.

X X theta_A >
© gl 4 y >y 4 theta_B > 3
fcn fen
z bz theta_C »
Trayectoria Cinematica Inversa

Figure 13. Connection of Simulink subsystems with the simplified planar ball-plate robot model
The code entered in the Trajectory block presents the circular behavior desired for this project, which can
be seen in Code 2.

12

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

Code 2. Circular Trajectory

function [x, y, z] = fcn(t)
nx = 0.10 * cos (t);

ny = 0.10 * sin (t);

nm = sqrt (nx "2 + ny "2 + 1);
X = nx / nm;

y = ny / nm;

z =1/ nm;

end

Now the inverse kinematics block contains Code 3, which is essentially the result of the
procedure described in Section 2 of this document for inverse kinematics.

Code 3: Inverse Kinematics

function [theta_A , theta_B , theta_C] = fcn(x, y, z)

theta A = Brazo A (X, y, z);
theta_B = Brazo_ B (x, y, z);
theta_C = Brazo_ C (x, y, 2);
end

As seen in Code 3, separate functions are called. These functions contain Equation 30, Equation
31, and Equation 32.

5. COMPUTER VISION

Computer vision, also known by other names such as artificial vision or image interpretation, is a
discipline that seeks the automatic deduction of the structure and properties of a three-
dimensional scenario or world, possibly changing, from one or more captured images. Regarding
the images, these can be black and white or color, captured by a single camera or several
associated, or even, in a greater degree of generalization of the image concept, come from non-
visual sensors such as acoustic, thermal, tactile, among others [7].

5.1. Platform Detection

For platform detection, the OpenCV library will be used through its color detection function, all
programmed in Python. Something to keep in mind is that usually the integrated camera of
laptops has the number 0, and an external webcam can vary this number; in this particular case,
it's number 2 and is configured using the code: cap = cv2.VideoCapture(2). Color segmentation is
a fundamental technique in image processing for object identification [12].

The definition of color detection values is done considering that HSV colors are used. For this
case, the blue color spectrum will be used, and to define it through code, it's necessary to declare
them using NumPy arrays, as shown in Code 4.

Code 4. Color Spectrum Definition

azulBajo = np.array([100, 10, 100], np.uint8)

13

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025
azulAlto = np.array([130, 255, 255], np.uint8)

By default, OpenCV processes the camera image in a BGR color scheme. Therefore, the first step
is to convert this scheme to an HSV type, using that frame to start the color search, and
subsequently find the contour of objects within that color range. This procedure is shown in Code
5.

Code 5. Mask Creation and Contour Search

frameHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

maskAzul = cv2.inRange(frameHSV, azulBajo, azulAlto)

contornos, _ = cv2.findContours(maskAzul, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

What is done in Code 6 is to calculate the area of the detected zone, and if it's greater than 3000,
proceed to find the center of that area and draw a point to identify it. The cv2.putText function
places the coordinates of that point, taking the entire camera's field of view as a reference. The
cv2.ConvexHull() function smooths the contour to make it appear more uniform, and the last line
draws that contour on the original frame.

Code 6. Drawing Contour in Detected Area

for c in contornos:
area = cv2.contourArea(c)
if area > 3000:
M = cv2.moments(c)
if (M["m@e"] == @): M["mee"] = 1
x = int(M["m1e"] / M["mee"])
y = int(M["mO1"] / M["mee"])
cv2.circle(frame, (x, y), 7, (0, 255, 9), -1)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(frame, "{},{}".format(x, y), (x + 10, y), font,
©.75, (@, 255, @), 1, cv2.LINE_AA)
nuevoContorno = cv2.convexHull(c)
cv2.drawContours(frame, [nuevoContorno], @, (255, @, 0), 3)

5.2. Ball Detection

For detecting the ball on the platform, Hough Circle detection [13] will be used. The function in
Code 7 first converts the image obtained by the camera to grayscale, then applies a blur effect to
reduce background noise. Finally, the HoughCircles function is responsible for finding these
circles. Important parameters include 100, referring to the minimum distance between two
possible circles; paraml is the sensitivity for circle detection; param?2 indicates after how many
detected points a circle can be considered; and minRadius and maxRadius define the minimum
and maximum radii for circles to be detected. Subsequently, the center of the detected circles is
identified and drawn.

Code 7: Creating Distorted Frame and Center Location

grayFrame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blurFrame = cv2.GaussianBlur(grayFrame, (17, 17), 0)

14

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025
circles = cv2.HoughCircles(blurFrame, cv2.HOUGH_GRADIENT, 1.2, 100,
paraml=100, param2=30, minRadius=75,
maxRadius=400)
if circles is not None:
circles = np.uintl6(np.around(circles))
chosen = None
for i in circles[o, :]:
if chosen is None: chosen = i
if prevCircle is not None:
if dist(chosen[@], chosen[1], prevCircle[@], prevCircle[1])

dist(i[e], i[1], prevCircle[©@], prevCircle[1]):
chosen = 1

cv2.circle(frame, (chosen[@], chosen[1]), 1, (@, 100, 100), 3)

cv2.putText(frame, "{},{}".format(chosen[@], chosen[1]),
(chosen[@] + 10, chosen[1]), font, ©.75, (@, 255, @), 1, cv2.LINE_AA)

cv2.circle(frame, (chosen[@], chosen[1]), chosen[2], (255, 0,
255), 3)

prevCircle = chosen

6. RESULTS

Below are the results obtained from the simulation and image processing for the platform and
ball. We describe how Matlab and Simulink were used to model the system's behavior and verify
the inverse kinematics equations, as well as the use of computer vision algorithms to detect key
elements. We also analyze the graphs comparing the ideal and actual trajectories.

In Figure 14, the 3D simulation is shown, where the sphere's entire behavior can be visually
observed, with the advantage of being able to obtain result data by leveraging the full power of
Matlab and Simulink tools.

Figure 14. Simulink simulation view

To test the robot's behavior using the equations obtained in Section 2 and due to the limitation of
adding a camera in Simulink, a PID block was added as feedback to achieve more realistic robot
behavior during the simulation. PID controllers are widely used in control engineering for their
effectiveness and simplicity [14]. Using a circular trajectory, Figure 15a shows the graph of the
ideal trajectory programmed in the simulation. In Figure 15b, the graph of the actual trajectory

15

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025
obtained after the simulation finished and starting with the ball at the center of the platform can
be observed. As seen in both graphs of Figure 15, the trajectories are practically identical,
demonstrating that the inverse kinematics equations are fulfilling their function of adequately
moving the arms depending on the ball's location.

Trayectoria ideal Trayectoria real
0.08 0.08
—
0.06 \ 0.06
0.04 \ 0.04 \
\
0.02 \ 0.02 \\
| | —
0 0 \ — |
| | ;
/ -
002 \\ / 0,02 \ /
\
0.04 \ / 0.04 \ /
0.06 \ 006
S~ ~_
-0.08 -0.08

-0.1 -005 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

Figure 15. Comparison of ideal (a) and real (b) trajectory

As shown in Section 5, part of the code used to detect the platform and ball separately was
explained. In Figure 16a, a window showing the platform detection is visible, displaying the
coordinates of the platform's center relative to the camera's entire field of view. Meanwhile,
Figure 16b shows the ball detection along with its respective center coordinates.

(a) Plataforma (b) Bola

Figure 16. Platform (a) and sphere (b) detection

The combined result of both codes can be seen in Figure 17. The coordinates of the platform's
center point were hidden to improve visibility; however, a green reference point is still shown.
The displayed coordinates are those of the ball's center (black dot) with respect to the platform's
center point (green dot), and these coordinates will serve as input for the inverse kinematics
equations in Section 2.

16

International Journal of Information Technology, Control and Automation (IJITCA)
Vol.15, No.1/2/3/4, October 2025

Figure 17. Final computer vision result applied to sphere and platform

7. CONCLUSIONS

This work successfully addressed the derivation of inverse kinematics equations for a planar ball-
plate robot, a fundamental step for its precise control. We demonstrated the feasibility of
integrating Matlab and Simulink for the dynamic modeling and simulation of the robot, allowing
us to validate its behavior before any physical implementation. The 3D simulation in Simulink,
complemented by a PID controller, confirmed the accuracy of our equations by achieving nearly
identical simulated and desired sphere trajectories.

Additionally, the implementation of computer vision using OpenCV proved effective for real-
time platform and sphere detection and tracking. The ability to obtain the coordinates of these
elements is crucial for closing the control loop, as these coordinates can be used as input for the
inverse kinematics equations, enabling adaptive visual control of the robot.

In summary, this project lays the groundwork for developing a robust control system for the
planar ball-plate robot, combining the precision of inverse kinematics with visual feedback. The
methodologies employed and the results obtained validate the proposed approach, opening the
door for future research in active control and practical applications.

REFERENCES

[1] Siciliano, B., & Khatib, O. (Eds.). (2008). Springer Handbook of Robotics. Springer.

[2] Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot Modeling and Control. John Wiley
& Sons.

[3] The MathWorks, Inc. (2024) "MATLAB. The Language of Technical Computing." Retrieved from
https://www.mathworks.com

[4] The MathWorks, Inc. (2024) "Simulink. Simulation and Model-Based Design." Retrieved from
https://www.mathworks.com/products/simulink.html

[S] Dorf, R. C., & Bishop, R. H. (2011). Modern Control Systems (12th ed.). Pearson.

[6] Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer Vision with the OpenCV Library.
O'Reilly Media.

17

(7]
(8]

(9]
[10]

[11]

[12]
[13]

[14]

International Journal of Information Technology, Control and Automation (IJITCA)

Vol.15, No.1/2/3/4, October 2025
Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer Science & Business
Media.
Craig, J. J. (2005). Introduction to Robotics: Mechanics and Control (3rd ed.). Pearson Prentice
Hall.
Merlet, J. P. (2006). Parallel Robots (2nd ed.). Springer.
The MathWorks, Inc. (2024). Simscape Multibody Link (R2024a). Retrieved from
https://www.mathworks.com/products/simscape-multibody.html
Al-Habaibeh, A., & Khusnood, A. (2017). "Integrated CAD/CAE for Smart Product Design and
Manufacturing." In Smart Product Design and Manufacturing (pp. 3-21). Springer.
Gonzalez, R. C., & Woods, R. E. (2010). Digital Image Processing (3rd ed.). Pearson Prentice Hall.
Hough, P. V. C. (1962). "Method and means for recognizing complex patterns." U.S. Patent No.
3,069,654.
Ogata, K. (2010). Modern Control Engineering (5th ed.). Prentice Hall.

18

