ANTI-SYNCHRONIZATION OF PAN SYSTEMS VIA SLIDING MODE CONTROL

Sundarapandian Vaidyanathan

1Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University
Avadi, Chennai-600 062, Tamil Nadu, INDIA
sundarvtu@gmail.com

ABSTRACT
This paper investigates the anti-synchronization of identical Pan systems (Pan, Xu and Zhou, 2010) by sliding mode control. The stability results derived in this paper for the anti-synchronization of identical Pan systems are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the sliding mode control method is very effective and convenient to achieve anti-synchronization of the identical Pan systems. Numerical simulations are shown to illustrate and validate the anti-synchronization schemes derived in this paper for the identical Pan systems.

KEYWORDS
Sliding Mode Control, Anti-Synchronization, Chaotic Systems, Pan System.

1. INTRODUCTION
Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The sensitive nature of chaotic systems is commonly called as the butterfly effect [1]. Chaos theory has been applied in many scientific disciplines such as Mathematics, Computer Science, Microbiology, Biology, Ecology, Economics, Population Dynamics and Robotics.

Synchronization of chaotic systems is a phenomenon which may occur when two or more chaotic oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator. Because of the butterfly effect which causes the exponential divergence of the trajectories of two identical chaotic systems started with nearly the same initial conditions, synchronizing two chaotic systems is seemingly a very challenging problem.

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is used. If a particular chaotic system is called the master or drive system and another chaotic system is called the slave or response system, then the idea of the anti-synchronization is to use the output of the master system to control the slave system so that the states of the slave system have the same amplitude but opposite signs as the states of the master system asymptotically.

Since the pioneering work by Pecora and Carroll ([2], 1990), chaos synchronization problem has been studied extensively and intensively in the literature [2-17]. Chaos theory has been applied to a variety of fields such as physical systems [3], chemical systems [4], ecological systems [5], secure communications [6-8], etc.

In the last two decades, various schemes have been successfully applied for chaos synchronization such as PC method [2], OGY method [9], active control method [10-14], adaptive control method [15-20], time-delay feedback method [21], backstepping design method [22], sampled-data feedback method [23], etc.
In this paper, we derive new results based on the sliding mode control [24-28] for the anti-synchronization of identical Pan systems ([29], Pan, 2010). In robust control systems, the sliding mode control method is often adopted due to its inherent advantages of easy realization, fast response and good transient performance as well as its insensitivity to parameter uncertainties and external disturbances.

This paper has been organized as follows. In Section 2, we describe the problem statement and our methodology using sliding mode control (SMC). In Section 3, we discuss the anti-synchronization of identical Pan systems. In Section 4, we summarize the main results obtained in this paper.

2. PROBLEM STATEMENT AND OUR METHODOLOGY USING SMC

In this section, we describe the problem statement for the anti-synchronization for identical chaotic systems and our methodology using sliding mode control (SMC).

Consider the chaotic system described by

\[\dot{x} = Ax + f(x) \]

(1)

where \(x \in \mathbb{R}^n \) is the state of the system, \(A \) is the \(n \times n \) matrix of the system parameters and \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is the nonlinear part of the system.

We consider the system (1) as the master or drive system.

As the slave or response system, we consider the following chaotic system described by the dynamics

\[\dot{y} = Ay + f(y) + u \]

(2)

where \(y \in \mathbb{R}^n \) is the state of the system and \(u \in \mathbb{R}^m \) is the controller to be designed.

If we define the anti-synchronization error as

\[e = y + x, \]

(3)

then the error dynamics is obtained as

\[\dot{e} = Ae + \eta(x, y) + u, \]

(4)

where

\[\eta(x, y) = f(y) + f(x) \]

(5)

The objective of the global chaos synchronization problem is to find a controller \(u \) such that

\[\lim_{t \to \infty} \|e(t)\| = 0 \]

for all \(e(0) \in \mathbb{R}^n \).
To solve this problem, we first define the control u as

$$u = -\eta(x, y) + Bv$$

(6)

where B is a constant gain vector selected such that (A, B) is controllable.

Substituting (5) into (4), the error dynamics simplifies to

$$\dot{e} = Ae + Bv$$

(7)

which is a linear time-invariant control system with single input v.

Thus, the original anti-synchronization problem can be replaced by an equivalent problem of stabilizing the zero solution $e = 0$ of the system (7) by a suitable choice of the sliding mode control. In the sliding mode control, we define the variable

$$s(e) = Ce = c_1e_1 + c_2e_2 + \cdots + c_ne_n$$

(8)

where $C = [c_1, c_2, \cdots, c_n]$ is a constant vector to be determined.

In the sliding mode control, we constrain the motion of the system (7) to the sliding manifold defined by

$$S = \{x \in \mathbb{R}^n \mid s(e) = 0\}$$

which is required to be invariant under the flow of the error dynamics (7).

When in sliding manifold S, the system (7) satisfies the following conditions:

$$s(e) = 0$$

(9)

which is the defining equation for the manifold S and

$$\dot{s}(e) = 0$$

(10)

which is the necessary condition for the state trajectory $e(t)$ of (7) to stay on the sliding manifold S.

Using (7) and (8), the equation (10) can be rewritten as

$$\dot{s}(e) = C[Ae + Bv] = 0$$

(11)

Solving (11) for v, we obtain the equivalent control law

$$v_{eq}(t) = -(CB)^{-1}CA \, e(t)$$

(12)

where C is chosen such that $CB \neq 0$.

17
Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as

\[\dot{e} = \left[I - B(CB)^{-1}C \right] A e \]

(13)

The row vector \(C \) is selected such that the system matrix of the controlled dynamics \(\left[I - B(CB)^{-1}C \right] A \) is Hurwitz, i.e. it has all eigenvalues with negative real parts. Then the controlled system (13) is globally asymptotically stable.

To design the sliding mode controller for (7), we apply the constant plus proportional rate reaching law

\[\dot{s} = -q \text{sgn}(s) - k \ s \]

(14)

where \(\text{sgn}(\cdot) \) denotes the sign function and the gains \(q > 0, \ k > 0 \) are determined such that the sliding condition is satisfied and sliding motion will occur.

From equations (11) and (14), we can obtain the control \(v(t) \) as

\[v(t) = -(CB)^{-1} \left[C(kI + A)e + q \text{sgn}(s) \right] \]

(15)

which yields

\[v(t) = \begin{cases}
-(CB)^{-1} \left[C(kI + A)e + q \right], & \text{if } s(e) > 0 \\
-(CB)^{-1} \left[C(kI + A)e - q \right], & \text{if } s(e) < 0
\end{cases} \]

(16)

Theorem 2.1. The master system (1) and the slave system (2) are globally and asymptotically anti-synchronized for all initial conditions \(x(0), y(0) \in \mathbb{R}^n \) by the feedback control law

\[u(t) = -\eta(x, y) + Bv(t) \]

(17)

where \(v(t) \) is defined by (15) and \(B \) is a column vector such that \((A, B) \) is controllable. Also, the sliding mode gains \(k, q \) are positive.

Proof. First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the closed-loop error dynamics as

\[\dot{e} = Ae - B(CB)^{-1} \left[C(kI + A)e + q \text{sgn}(s) \right] \]

(18)

To prove that the error dynamics (18) is globally asymptotically stable, we consider the candidate Lyapunov function defined by the equation

\[V(e) = \frac{1}{2} s^2(e) \]

(19)

which is a positive definite function on \(\mathbb{R}^n \).
Differentiating V along the trajectories of (18) or the equivalent dynamics (14), we get

$$\dot{V}(e) = s(e)\dot{s}(e) = -ks^2 - q \text{sgn}(s)s$$

which is a negative definite function on R^n.

This calculation shows that V is a globally defined, positive definite, Lyapunov function for the error dynamics (18), which has a globally defined, negative definite time derivative \dot{V}.

Thus, by Lyapunov stability theory [30], it is immediate that the error dynamics (18) is globally asymptotically stable for all initial conditions $e(0) \in R^n$.

This means that for all initial conditions $e(0) \in R^n$, we have

$$\lim_{t \to \infty} \|e(t)\| = 0$$

Hence, it follows that the master system (1) and the slave system (2) are globally and asymptotically anti-synchronized for all initial conditions $x(0), y(0) \in R^n$.

This completes the proof. ■

3. **Anti-Synchronization of Identical Pan Systems using Sliding Mode Control**

3.1 **Theoretical Results**

In this section, we apply the sliding mode control results derived in Section 2 for the anti-synchronization of identical Pan systems ([29], Pan, 2010).

Thus, the master system is described by the Pan dynamics

$$\begin{align*}
\dot{x}_1 &= a(x_2 - x_1) \\
\dot{x}_2 &= cx_1 - x_1x_3 \\
\dot{x}_3 &= -bx_3 + x_1x_2
\end{align*}$$

(21)

where x_1, x_2, x_3 are state variables and a, b, c are positive, constant parameters of the system.

The slave system is also described by the Pan dynamics

$$\begin{align*}
\dot{y}_1 &= a(y_2 - y_1) + u_1 \\
\dot{y}_2 &= cy_1 - y_1y_3 + u_2 \\
\dot{y}_3 &= -by_3 + y_1y_2 + u_3
\end{align*}$$

(22)

where y_1, y_2, y_3 are state variables and u_1, u_2, u_3 are the controllers to be designed.
The Pan systems (21) and (22) are chaotic when

\[a = 10, \quad b = \frac{8}{3} \quad \text{and} \quad c = 16. \]

Figure 1 illustrates the state orbits of the chaotic Pan system (21).

The chaos anti-synchronization error is defined by

\[e_i = y_i + x_i, \quad (i = 1, 2, 3) \]

The error dynamics is easily obtained as

\[
\begin{align*}
\dot{e}_1 &= a(e_2 - e_1) + u_1 \\
\dot{e}_2 &= ce_1 - y_1y_3 - x_1x_3 + u_2 \\
\dot{e}_3 &= -be_3 + y_1y_2 + x_1x_2 + u_3
\end{align*}
\]

We write the error dynamics (24) in the matrix notation as

\[\dot{e} = Ae + \eta(x, y) + u \]
where

\[
A = \begin{bmatrix}
-a & a & 0 \\
c & 0 & 0 \\
0 & 0 & -b
\end{bmatrix}, \quad \eta(x, y) = \begin{bmatrix}
0 \\
y_1y_3 - x_1x_3 \\
y_1y_2 + x_1x_2
\end{bmatrix} \quad \text{and} \quad u = \begin{bmatrix}
u_1 \\
u_2 \\
u_3
\end{bmatrix}. \quad (26)
\]

The sliding mode controller design is carried out as detailed in Section 2.

First, we set \(u \) as

\[
u = \eta(x, y) + Bv \quad (27)
\]

where \(B \) is chosen such that \((A, B) \) is controllable.

We take \(B \) as

\[
B = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \quad (28)
\]

In the chaotic case, the parameter values are

\[
a = 10, \quad b = 8/3 \quad \text{and} \quad c = 16.
\]

The sliding mode variable is selected as

\[
s = Ce = \begin{bmatrix}
6 & 6 & 1
\end{bmatrix}e = 6e_1 + 6e_2 + e_3 \quad (29)
\]

which makes the sliding mode state equation asymptotically stable.

We choose the sliding mode gains as

\[
k = 6 \quad \text{and} \quad q = 0.1.
\]

We note that a large value of \(k \) can cause chattering and an appropriate value of \(q \) is chosen to speed up the time taken to reach the sliding manifold as well as to reduce the system chattering.

From Eq. (15), we can obtain \(v(t) \) as

\[
v(t) = -5.5385 \ e_1 - 7.3846e_2 - 0.2564 \ e_3 - 0.0077 \ \text{sgn}(s) \quad (30)
\]

Thus, the required sliding mode controller is obtained as

\[
u = -\eta(x, y) + Bv \quad (31)
\]

where \(\eta(x, y), B \) and \(v(t) \) are defined as in the equations (26), (28) and (30).
By Theorem 2.1, we obtain the following result.

Theorem 3.1. The identical Pan systems (21) and (22) are globally and asymptotically anti-synchronized for all initial conditions with the sliding mode controller \(u \) defined by (31).

3.2 Numerical Results

In this section, for the numerical simulations, the fourth-order Runge-Kutta method with time-step \(h = 10^{-6} \) is used to solve the Pan systems (21) and (22) with the sliding mode controller \(u \) given by (31) using MATLAB.

In the chaotic case, the parameter values are given by \(a = 10, \ b = 8 / 3 \) and \(c = 16 \).

The sliding mode gains are chosen as \(k = 6 \) and \(q = 0.1 \).

The initial values of the master system (21) are taken as

\[
x_1(0) = 30, \ x_2(0) = -5, \ x_3(0) = 14
\]

The initial values of the slave system (22) are taken as

\[
y_1(0) = 14, \ y_2(0) = 10, \ y_3(0) = -26
\]

Figure 2 illustrates the anti-synchronization of the identical Pan systems (21) and (22).

Figure 3 illustrates the time-history of the anti-synchronization errors \(e_1, e_2, e_3 \).
Figure 2. Anti-Synchronization of Identical Pan Systems

Figure 3. Time-History of the Anti-Synchronization Error
4. CONCLUSIONS

In this paper, we have deployed sliding mode control (SMC) to achieve anti-synchronization for the identical Pan systems (2010). Our anti-synchronization results for the identical Pan systems have been proved using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the sliding mode control method is very effective and convenient to achieve anti-synchronization for the identical Pan systems. Numerical simulations are also shown to illustrate the effectiveness of the anti-synchronization results derived in this paper using the sliding mode control.

REFERENCES

Author

Dr. V. Sundarapandian obtained his Doctor of Science degree in Electrical and Systems Engineering from Washington University, St. Louis, USA in May 1996. He is a Professor at the R & D Centre at Vel Tech Dr. RR & Dr. SR Technical University, Chennai, Tamil Nadu, India. He has published over 230 refereed international publications. He has published over 150 papers in National and International Conferences. He is the Editor-in-Chief of the AIRCC Journals - *International Journal of Instrumentation and Control Systems, International Journal of Control Systems and Computer Modelling, and International Journal of Information Technology, Control and Automation*. His research interests are Linear and Nonlinear Control Systems, Chaos Theory and Control, Soft Computing, Optimal Control, Operations Research, Mathematical Modelling and Scientific Computing. He has delivered several Key Note Lectures on Control Systems, Chaos Theory, Scientific Computing, Mathematical Modelling, MATLAB and SCILAB.