NEW METHOD AND OPTIMIZATION OF ELECTRICAL ENERGY PRODUCTION FROM A WIND TURBINE

Marouf Mohamed Yasser 1, Fellah Mohamed Karim 2, Fezazi Omar 3 and Benkhoris Mohamed Fouad 4

1ICEPS Laboratory (Intelligent Control & Electrical Power Systems) Djillali Liabes University, Sidi Bel-Abbes, Algeria
4IREENA Laboratory, Ecole Polytechnique de Nantes, Nantes, France

ABSTRACT

This paper deals with a complete 1.5 MW Horizontal Axis Wind Turbine (HAWT) design using a novel Maximum Power Point Tracking (MPPT) algorithm based on real time machine testing and a low cost network communication system. It also includes a blade design study and simulation for a maximum efficiency and a high control strategy for maximum energy production with a minimum harmonic distortion for the generated current. The parameters studied are varied: electrical characteristics, static and aerodynamic, blade geometric profiles, and the influence of wind speed. The wind turbine uses a doubly fed induction generator « DFIG » controlled by a Pulse Width Modulation (PWM) strategy for 27 levels Cascaded three H-Bridge voltage source inverter. It will allow us to control the rotor voltage in magnitude and phase angle more easily & with high efficiency. This wind turbine was used on a 15MW wind farm. The study was conducted through several simulation software (Matlab, Catia, and Solid works). The whole control strategy, design principle and simulation results are shown & discussed.

KEYWORDS

1.INTRODUCTION

Energy consumption from fossil fuels is considered the major factor of global warming and environmental degradation. The use of natural renewable energy sources such as solar cell, geothermal power, wind, wave power and tidal current has become a reality and a great alternative to generate electrical power.

In order to meet world power needs, without forgetting economic & environmental impacts, the wind energy is the most interesting & recommended source of energy. The wind turbine market does not stop growing. One of the main objectives of wind systems is to develop and improve the effectiveness and efficiency of the wind turbine. [7]

The rotation speed of the blades determines the efficiency of the conversion of wind energy into mechanical energy which is then converted into electrical energy for a given wind speed, precise blades geometry and orientation [6]. This paper studies the characteristics & design of a 1.5 MW HAWT design wind turbine using a Double-Fed Induction Generator (DFIG) (Figure 1).
2. PROPOSED METHOD

Our work began by a structural study of the blades (airfoil shape) than an electrical study comes into play. Although wind turbine presents a non linear characteristics, the objectives of the various control approaches is to determine the optimum working point that allows the wind turbine to be extracted optimally at any time. A new Maximum Power Point Tracking (MPPT) algorithm based on real time machine testing and a low cost network communication system on a wind farm was developed and studied. The sensors implemented on only one wind turbine will check every \(N_\text{sec} \) the wind characteristics then will envoy them to the controller station. This algorithm implemented on a micro-controller will use this information to calibrate the Nacelle angle and the blades angle to track the maximum power coefficient of the wind turbine& will apply these modifications to all the wind turbines via network. We will use also a Pulse Width Modulation (PWM) technique strategy of a 27 levels Cascaded three H-Bridge voltage source inverter to control the rotor voltage in magnitude and phase angle more easily and with high efficiency. This approach will improve the maximum electrical power generation with a minimum harmonic distortion. This wind turbine design and algorithm will be used into a 15MW wind farm.

3. MODELING OF THE WIND TURbine

The following equations describe the relation between the mechanic power delivered by the wind turbine and the wind speed:

\[
P_t = \frac{1}{2} \cdot \rho \cdot R^2 \cdot v^3 \cdot C_p(\lambda, \beta)
\]

\[
\lambda = \Omega_r \cdot \frac{R}{v}
\]

Where \(C_p \) is the power Coefficient; \(\beta \), Pitch angle (deg); \(\lambda \), Tip speed ratio; \(v \), wind velocity (m/s); \(R \), Radius of the wind turbine; \(\Omega_r \), Turbine speed (rad/s); \(\rho \), Air density (1.225 kg/m\(^3\) at \(T=15^\circ\text{C} \)).

To model \(C_p \), the following generic equation is used:

\[
C_p = f(\lambda, \beta) = C_1 \cdot \left(\frac{C_2}{\lambda_i} - C_3 \cdot \beta - C_4 \right) \exp \left(\frac{-C_5}{\lambda_i} \right) + C_6 \cdot \lambda
\]

\[
\frac{1}{\lambda_i} = \frac{1}{\lambda + 0.08\beta} - \frac{0.035}{\beta^3 + 1}
\]

The coefficients \(C_1 \) to \(C_6 \) are: \(C_1=0.5176 \), \(C_2=116 \), \(C_3=0.4 \), \(C_4=5 \), \(C_5=21 \) and \(C_6=0.0068 \).

The torque coefficient \(C_t \) will be expressed by:

\[
C_t = \frac{C_p}{\lambda}
\]

Figure 1. Wind Energy Conversion System based on a doubly fed induction generator
The following equation describes the produced torque:
\[T_r = \frac{P_e}{\Omega_r} = \frac{1}{2} \rho \pi R^3 V^2 C_f(\lambda, \beta) \quad (06) \]

4. MODELING OF THE AIRFOIL SHAPE

If we consider that the environment is isobaric \(P_0 \) and with, \(A_s \), the residual trail section and \(A_e \), the turbine section. We will find:
\[T = \rho A_s V_s (V - V_s) \quad (07) \]
If \(V_1 = V_2 = V_{eso} T = A_e (p_1 - p_2) \quad (08) \]

From equation (07) and (08) we find:
\[p_1 - p_0 = \rho \frac{V^2 - V_s^2}{2} \quad p_0 - p_2 = \rho \frac{V_s^2 - V_s^2}{2} \quad , \quad p_1 - p_2 = \rho \frac{V_s^2 - V_s^2}{2} \quad (09) \]

From equation (07) and (08) we have also:
\[A_e \cdot (p_1 - p_2) = \rho A_s V_s (V - V_s) \quad (10) \]

And from equation (09) and (10) we find that:
\[\frac{A_s}{A_e} = \frac{V - V_s}{2V_s} = \frac{1 + x}{2x} \quad \text{With} \quad x = \frac{V_s}{V} \quad (11) \]

The ratio between the residual trail section \(A_s \), and the turbine section \(A_e \), is a function of the only coefficient “\(x \)" between the residual velocity and the wind velocity.

From figure 2, we find also:
\[P_e = \frac{V^2}{2} - \frac{V_s^2}{4} \rho A_s V_s \]
\[P_e = \frac{A_s}{A_e} \frac{V_s}{V} \left(1 - \frac{V_s^2}{V^2} \right) \rho A_e V^3 \]
\[P_e = \frac{(1 + x)(1 + x^2) \rho A_s V_s^3}{2} \quad (12) \]

\(P_e \) is the estimated wind turbine power.
For any section along the blade we have:

\[U(r) = \frac{r}{R} \lambda V_a \]

(13)

\[\lambda = \frac{U(r=R)}{V_a} \]

(14)

Where \(V \) is the wind speed; \(U \), the speed induced by the rotation; \(\lambda \), tip speed ratio; \(V_a \), the wind speed relative to the airfoil shape.

\[\phi = \arctan\left(\frac{2}{3\lambda} \left(\frac{R}{r}\right)\right) \]

(15)

\(\Phi \): is the angle between the velocity vector and on the vertical plane, it varies according to \(r \).

\(\beta \): is the pitch angle of the blade and the vertical plane, it varies according to \(r \).

\(\alpha \): is the desired angle of attack, it depends on the chosen profile and the position \(r \).

For \(\Delta_r \) of the airfoil shape we have:

\[D = \frac{1}{2} \rho \cdot V_a^2 \cdot C_D \cdot c \Delta_r \]

(16)

\[L = \frac{1}{2} \rho \cdot V_a^2 \cdot C_L \cdot c \Delta_r \]

(17)

With: \(c = \frac{16 \pi R}{9 \lambda \bar{g}} \)

(18)

Where, \(L \), is the Lift; \(C_L \), Lift coefficient; \(D \), Drag; \(C_D \): Drag Coefficient; \(c \), the chord of the blade.

The airfoil shape chosen to this study is the NACA-0012 Airfoil shape, the main characteristics of this profile is it finite thickness. That mean, the lift coefficient keeps increasing until the angle of attack reach 90°[11]. Figure 4 and Figure 5 shows the characteristics of the NACA-0012 airfoil shape as a function of angle of attack and Reynolds number.
Currently there are a few MPPT algorithm developed for the existing wind turbine [8,9,10]. The most used method is the speed control; it acquires generator speed data and wind speed and direction data [7].

As we know, the Betz limit is the maximum ratio between the kinetic energy of the wind and the mechanical power of the wind turbine used to turn the rotor of the generator [8]. This limit is about $16/27 \approx 0.593$ [2]. In real world this ratio is between 0.40 to 0.50.

5. Maximum Power Point Tracking

Figure 4. NACA-0012 airfoil shape, NACA Data-Base

Figure 5. NACA-0012 characteristics, NACA Data-Base
This algorithm is based on real time machine testing, it’s implemented on a micro-controller and connected to a sensor placed on the top of only one wind turbine, this sensor is connected to a soft timer that will trigger a signal to check every N_{sec} the data of wind and the generator speed and envoy them to the control station via network, the algorithm will use them to compute the maximum Power coefficient (C_p_{max}), the basic principle of the algorithm is to change the value of pitch angle of the blades (β), then try to find the tip speed ratio (λ) for which the C_p value is at maximum, it will compute a multiple value of C_p_{max} at each β ($0 < \beta < \text{Max}$) then it will compare these values to find the optimum condition (β value and λ value) for which $C_p = \text{max}$, this new condition (β and λ values) will be transmitted to the wind turbine. On a wind farm all
the wind turbines will be connected via low cost network to the control station, they will receive these new conditions at the same time, and the changes on β will be done for all wind turbines.

The approximate equation describing this algorithm is expressed as follow:

$$\beta_{\text{ideal}} = \arg \max_{\beta} \left(C_1 \left(\frac{C_2}{A_1} - C_3 \right) - C_4 \right) \exp \left(\frac{-C_6}{A_1} \right) + C_6 \lambda$$ \hspace{1cm} (19)

Diagram 1. MPPT algorithm principal and main function.

6. MODELING THE DFIG

The stator and he rotor voltage equations of a doubly fed induction generator in the d-q reference frame are as follows:

$$\begin{align*}
V_{ds} &= R_s i_{ds} - \omega_s \varphi_{ds} + \tau \varphi_{ds} \\
V_{qs} &= R_s i_{qs} - \omega_s \varphi_{qs} + \tau \varphi_{qs}
\end{align*}$$

$$\begin{align*}
V_{dr} &= R_r i_{dr} - (\omega_s - \omega_r) \varphi_{qr} + \tau \varphi_{dr} \\
V_{qr} &= R_r i_{qr} - (\omega_s - \omega_r) \varphi_{dr} + \tau \varphi_{qr}
\end{align*}$$ \hspace{1cm} (21)

With τ is the derivative symbol $\left(\frac{d}{dt} \right)$.

The stator and rotor flux components in the d-q frame are:

$$\begin{align*}
\varphi_{ds} &= (L_s + L_m) i_{ds} + L_m i_{dr} = L_s i_{ds} + L_m i_{dr} \\
\varphi_{qs} &= (L_s + L_m) i_{qs} + L_m i_{qr} = L_s i_{qs} + L_m i_{qr}
\end{align*}$$

$$\begin{align*}
\varphi_{dr} &= (L_{ir} + L_m) i_{dr} + L_m i_{ds} = L_{ir} i_{dr} + L_m i_{ds} \\
\varphi_{qr} &= (L_{ir} + L_m) i_{qr} + L_m i_{qs} = L_{ir} i_{qr} + L_m i_{qs}
\end{align*}$$

$$L_s = L_{is} + L_m$$

With:
The electromagnetic torque of the DFIG will be expressed by:

\[T_{em} = -\frac{3}{2} \rho \left(\frac{l_m}{l_r} \right) \left(\varphi_{ds} i_{qr} - \varphi_{qs} i_{dr} \right) \]

(24)

Mechanical equations:

\[T_t = T_{em} + J r \Omega_r + f_r \Omega_r \]

(25)

The generator active and reactive power at the grid side is:

\[
\begin{align*}
 p_s &= \frac{3}{2} (V_{ds} i_{ds} + V_{qs} i_{qs}) \\
 q_s &= \frac{3}{2} (V_{qs} i_{ds} - V_{ds} i_{qs})
\end{align*}
\]

(26)

7. Overview of the System

Figure 8, represents the proposed system used and shows the modifications done to the inverter side [3].

Today it has become hard to connect a signal power semi-conductor switch directly to medium voltage grid [3], to work with higher voltage levels, the multilevel inverter were introduced to the market as a solution for this problems, the main feature of a multilevel inverter is the low distortion of the output voltage and current signal and the low operating switching frequency [5].

7.1. Generator Side Converter

The generator side converter is connected directly to the stator of the DFIG. Park’s transformation is used for transforming the DFIG equations to the reference frame of park [3]. The current in the active power is proportional to the q-axis current. This way will help us to provide the maximum power at the grid side otherwise, the d-axis stator current is proportional to the reactive power [3] the reference value of the reactive power is set to zero to have a unity power factor operation [4] on the inverter and converter side we will use a PWM triangular signal carrier of a frequency of 1000Hz.

7.1. Generator Side inverter

The control of the grid side inverter help us to maintain the Dc-Link voltage constant and insure that the active power generated is fed back to the grid [3, 4], as we know the multilevel inverter have an efficiency of 99% at nominal operating point. The use of this typical configuration will help us to reduce the THD, as we also know the THD value is obtained by calculating the ration between the sum of all the harmonics powers and the power of the fundamental frequency. This following expression determines the value of THD:
\[THD\% = \frac{100}{U_1} \sqrt{\sum_{h=2}^{\infty} U_h^2} \]

(27)

Where, \(U_1 \) is the first harmonic of the signal; \(h \) is the harmonic order and \(U_h \) is the harmonic that presents order \(h \).

8. SIMULATION RESULTS

In this part we will check the performance of a 1.5 MW DFIG connected to the grid (appendix) using Matlab/simulink software. The control strategy of the wind turbine is simulated and tested in terms of power and current harmonic distortion.

We simulate this configuration to see the performance, the reliability and the robustness of our system, at a super-synchronous speed. We can see that the active power (Figure 9) step changed from 1.5 MW to 0.9 MW at \(t = 0.1s \) and again from 0.9 MW to 2 MW at \(t = 0.2s \), after \(t = 0.3s \) the active power stabilize at around 1.5 MW for all the time of simulation.

For the reactive power (Figure 9) step changed from 0 MVAR to 0.6 MVAR at \(t = 0.1s \) than from 0.6 MVAR to -0.2 MVAR at \(t = 0.2s \), after \(t = 0.3s \) the reactive power stabilize around 0 MVAR (reference value) for all time of simulation.

![Simulation results of the active and reactive power](image)

We can see from Figure 9, the PWM control strategy can control the active and reactive powers of DFIG with a very fast time response and without errors. We can see also that the stator and rotor current are a suitable sinusoidal signal in the two cases.

To observe the effectiveness of the proposed control strategy, “NPC converter with a Cascaded Three H-bridge inverter 27 levels” on the reduction of the harmonic distortion (THD) rate of the generated power and delivered current at the grid side, we used the FFT analyzer on the stator current waveform (\(I_{ss} \)), the results are as follows:

![Stator Current](image)
9. CONCLUSION

This paper presented an improved technique of energy production from a wind turbine, the MPPT algorithm implemented on the controller of the wind turbine has been proven to be useful, and with a fastest respond on the changes of the wind data and power coefficient to track the maximum power point, the Cascaded three H-Bridge inverter has shown also a good performance with a great reduction of the total harmonic distortion to 0.85%. This method can be used in the wind turbine conversion system. Further improvement can be done by testing other topologies.

Appendix

Table 1. Doubly Fed Induction Generator characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power, Pn</td>
<td>1.5 MW</td>
</tr>
<tr>
<td>Stator rated voltage, Vs</td>
<td>690V</td>
</tr>
<tr>
<td>Rated Current, In</td>
<td>1900A</td>
</tr>
<tr>
<td>Rated DV-Link voltage, Udc</td>
<td>1200V</td>
</tr>
<tr>
<td>Stator rated frequency f</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Number of pair of poles, p</td>
<td>2</td>
</tr>
<tr>
<td>Rotor inductance, Rr</td>
<td>0.021Ω</td>
</tr>
<tr>
<td>Stator inductance, Rs</td>
<td>0.012Ω</td>
</tr>
<tr>
<td>Mutual inductance, Lm</td>
<td>0.0135 H</td>
</tr>
<tr>
<td>Rotor inductance, Lr</td>
<td>0.0136 H</td>
</tr>
<tr>
<td>Stator Inductance, Ls</td>
<td>0.0137H</td>
</tr>
</tbody>
</table>

Table 2. Wind turbine characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade radius, R</td>
<td>29.85</td>
</tr>
<tr>
<td>Number of blades</td>
<td>3</td>
</tr>
<tr>
<td>Gearbox ratio, G</td>
<td>90</td>
</tr>
<tr>
<td>Moment of inertia, J</td>
<td>1000 kg.m²</td>
</tr>
<tr>
<td>Viscous friction coeff.</td>
<td>0.0024 N.m/s</td>
</tr>
<tr>
<td>Cut-in wind speed</td>
<td>6 m/s</td>
</tr>
<tr>
<td>Cut-out wind speed</td>
<td>26 m/s</td>
</tr>
<tr>
<td>Nominal wind speed, V</td>
<td>14 m/s</td>
</tr>
</tbody>
</table>
REFERENCES

Authors
Mohammed Yasser MAROUF : He received the license degree in Electrical Engineering in 2009 and Master degree in 2011 at the University of Sidi Bel-Abbes. He is currently a PhD student at the same university. He is a member of the ICEPS laboratory (Intelligent Control & Electrical Power Systems).

Mohammed-Karim FELLAH : was born in Oran, Algeria, in 1963. He received the Eng. degree in Electrical Engineering from University of Sciences and Technology (USTO), Oran, Algeria, in 1986, and The Ph.D. degree from National Polytechnic Institute of Lorraine (Nancy, France) in 1991. Since 1992, he is Professor at the University of Sidi Bel-Abbes (Algeria) and Member of the Intelligent Control and Electrical Power. His current research interest includes Power Electronics, Drives and HVDC links.

FEZAZI Omar : He received the license degree in Electrical Engineering in 2009 and Master degree in 2011 at the University of Sidi Bel-Abbes. He is currently a PhD student at the same university. He is a member of the ICEPS laboratory (Intelligent Control & Electrical Power Systems).

Mohamed Fouad Benkhoris: was born in Bou-sâada, Algeria, on September 17, 1963. He has studied at Ecole Nationale Polytechnique d’Alger (ENPA), Algeria, and received the Engineer degree in electrical engineering (1986). In 1991 he obtained his PHD degree in electrical engineering at INP Lorraine (France) and the “HDR” (Habilitation à diriger des recherches) in March 2004. From 1991, he is a Professor at the Departement of Electrical Engineering, of Polytech’Nantes, France. Since 2006 he is Professor at Polytech’Nantes, France. He makes research activities at the laboratory: “Institut de Recherche en Electronique et Electrotechnique de Nantes Atlantique”(IREENA) Saint Nazaire. His fields of interest are: dynamical modelling, simulation and control of electrical drives and especially multi phase drive, multi(converters systems and embarked network.