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ABSTRACT 
 
Short Read Alignment Mapping Metrics (SRAMM): is an efficient and versatile command line tool providing 

additional short read mapping metrics, filtering, and graphs. Short read aligners report MAPing Quality 

(MAPQ), but these methods generally are neither standardized nor well described in literature or software 

manuals. Additionally, third party mapping quality programs are typically computationally intensive or 

designed for specific applications. SRAMM efficiently generates multiple different concept-based mapping 

scores to provide for an informative post alignment examination and filtering process of aligned short reads 

for various downstream applications.  

 
SRAMM is compatible with Python 2.6+ and Python 3.6+ on all operating systems. It works with any short 

read aligner that generates SAM/BAM/CRAM file outputs and reports 'AS' tags. It is freely available under 

the MIT license at http://github.com/achon/sramm. 
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1. INTRODUCTION 
 

Short read alignment is vital to almost all Bioinformatics pipelines and currently only MAPping 

Quality (MAPQ) [1] scores are universally reported in short read alignment, SAM/BAM, files [2]. 

However, MAPQ is a non-robust singular score representing the probability of the read or read 

pair’s mapping alignment against a reference. Also, mapping quality as defined by MAPQ is 

distinctly a different measure than alignment score or probability of an alignment. Additionally, 

the genomic reference is not standardized across different applications leading to different 

alignments which may not be reflected in the score depending upon the alignment tool. Lastly, 

MAPQ suffers from differing implementations across various common tools such as BWA-MEM, 

Bowtie2, MOSAIK, VG [3, 4, 5, 6], etc and in general is not standardized. Therefore, there is a 

need for additional mapping metrics for downstream applications. Third party approaches to 

mapping quality work with read aligners [7], are re-implementations of read aligners [8], or are 

stand alone [9, 10]. Many have complex models or specific assumptions are not applicable to all 

pipelines [11, 12]. Lastly, many are computationally intensive and require as much time as the read 

aligners themselves. In contrast, SRAMM generates additional concept-based mapping scores: 

Mapped Identity (MI), Unique-Repeat (UR), and UnMapped (UM) scores to provide additional 

information that a user can translate into criteria for read filters. The mapping scores are based 

upon read alignment scores and not MAPQ. These scores allow for versatile filtering based upon 

different mapping concepts at the read alignment stage of analysis. The classic and common 

process is selecting uniquely mapping reads. We can filter reads exactly using a combination of 
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adjustable MIs, URs, and number of alignments while MAPQ cannot be translated unambiguously 

and is read aligner dependent. Additionally, depending upon the experiment and downstream 

analysis, the concept of mapping can differ. In many cases, the MAPQ metric is neither suitable 

nor sufficient by itself as discussed in various Bioinformatic communities. Here we describe 

SRAMM, an efficient and versatile command line Python tool to address this need. 
 

2. METHODS 
 

2.1. Implementation 
 

SRAMM is a lightweight command line executable to facilitate the ease of use on any system and 

in any pipeline scheme. It has three primary functions: generate metrics, filter results, and compute 

graphs. Currently it supports SAM/BAM/CRAM files through the pysam package [13]. The 

program is designed to perform any combination of the processes from command line arguments 

with optional parameters. The output is a tab delimited stats file containing read names, raw 

alignment scores, number of alignments, MAPQ, and the computed statistics. Additionally, graphs 

are generated using the matplotlib package [14] for the score distributions of the unfiltered or 

filtered data set. These outputs allow for visualization and examination of the short read data set. 

Lastly, additional filtering can be integrated into pipelines using samtools [14] or directly with 

command line tools on the output data files.  
 

2.2. Metrics 
 

SRAMM introduces 3 mapping scores: Mapped Identity (MI), Unique-Repeat (UR), and 

UnMapped (UM) in addition to retaining MAPQ and Number of Alignments. SRAMM accepts 

either single and paired end short reads therefore all metrics below have both single and paired end 

implementations. Here, we will generalize the equations and refer to the paired end version in text. 

The introduced mapping metrics are not designed to be used in a standalone manner due to their 

inherent ambiguity similar to MAPQ. They are intended to be used in combinations to allow for 

different mapping concepts to intersect providing unambiguous filtering or read selection. 
 

In each run of this program, all reads should fall under the same alignment score distribution. They 

are not required to be the same length, but they should have the same alignment scoring 

distribution. By allowing reads with different scoring distributions, it makes human interpretation 

of equivalent scores ambiguous. In general, the read set must have the same alignment score range 

and scheme regardless of read length. Currently AS is typically reported as an integer, therefore 

this is not the general case. For example, reads of lengths 50 and 100 will typically have different 

AS ranges. But, if the aligner calculates AS in such a way that they are mapped to the same score 

distribution, then it is possible to combine reads. Generally, this is not true, so a trivial solution to 

this is to segregate reads of different lengths, run SRAMM on each set of reads creating normalized 

mapping score ranges, and then pool the results. Additionally, this approach can be used for 

different experimental conditions such as different read lengths, library preparation, sequencing 

applications, and other experimental variables. 
 

Notation below is for paired end reads. The single end case is simpler as it would be the singular 

alignment score and not the sum of the pair of alignments and thus not explicitly shown. 
 

Let mi denote the number of alignments of the read pair i to the reference. 
 

let sj denote the sum of the two scores for the alignment pair j, 1 <= j <= mi.  

 

Let S be the maximum of the sj values for all i and j. 
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The mapping scores are defined from the above notation.  

 

2.2.1. Mapped Identity 

 

Mapped Identity score: The maximum alignment score for a given read pair, i, divided by the 

maximum possible alignment score of the data set, S. Range = [0, 1].  See equation 1 below.  

 

𝑀𝐼𝑖 =
𝑚𝑎𝑥(𝑠𝑖

1, 𝑠𝑖
2, … , 𝑠𝑖

𝑚𝑖)

𝑆
 

 

This is the percent identity for the highest alignment pair. Conceptually, it is how well did the pair 

of reads map anywhere to the provided reference. This metric is not sensitive to how many 

alignments nor where they are in the reference, hence Mapped Identity. By itself, this mapping 

score is not very informative. But, when combined with MAPQ or UR, it can be very helpful in 

adding further selection criteria and removing ambiguity. 

 

2.2.2. Unique-Repeat 

 

Unique Repeat Score: The unique-ness to repeat-ness of a pair of reads, i, as a query against the 

reference. That is, a higher score denotes a unique mapping location whereas a low score means 

the read maps to multiple locations with varying degrees. Range = (0, 1]. This score is highly 

sensitive to the number of alignments or alignment pairs.  See equation 2 below.  

 

𝑈𝑅𝑖 =
𝑚𝑎𝑥(𝑠𝑖

1, 𝑠𝑖
2, … , 𝑠𝑖

𝑚𝑖)

𝑆𝑚𝑖
+
∑ 𝑆
𝑚𝑖
𝑗=1 − 𝑠𝑖

𝑗

𝑆𝑚𝑖
 

 

If there is only one pair of alignments, then it is as unique as it is score divided by the max score 

which is MI. By the Bioinformatics common definition of a repeat, we have a lower score for more 

alignments. Additionally, each alignment of the score is weighted by their scores since a low 

alignment score means less confidence in the alignment itself, reducing the weight of that alignment 

as a possible repeat. 

 

Given the equation, it should be noted that a value of 1 is a theoretical max and is only achieved 

when the pair of reads only maps to one location with perfect alignment or has only 1 alignment 

pair with scores of 0. This occurs frequently as aligners have score thresholds for reporting 

alignments which clip low score alignments and must be taken into consideration when running 

the short read aligner. Additionally, the above formula considers all alignments output by the 

aligner. Some aligners will output more possible alignment pairs than others which can lead to very 

different score distributions.  

 

It should be noted that this score cannot be negative, however the closer the score is to 0 denotes a 

repeat in regards to the distribution of UR scores. If the read aligns to multiple places perfectly, 

then the score would be 1 divided by the number of alignments as more perfect alignments means 

more repeats which reduces the score. Most reads greater than 100bp will not map to multiple 

locations all with high scores unless there is some common sequence or repeated element. The 

distribution of this score in an experiment is highly dependent upon read length, scoring schema 

especially how it reports alternate alignments and the cutoff, and the reference sequences 

themselves. It is difficult to make cross experiment comparisons if many of the variables are 

different. However, given a pipeline with repeated samples, direct comparison of the distributions 

is meaningful.  
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Another key point is that UR by itself is ambiguous. The ambiguity is that the same score can come 

from read pairs that have a different number of alignments. A read pair with 2 alignments has an 

UR range of [0.5, 1.0) whereas a read pair with 3 alignments has an UR of [0.333, 1.0). Therefore, 

an arbitrary score of say 0.90 can come from a read pair with 2, 3, or any number of alignments. 

Conceptually, this is intended. In the example above, both are almost unique even though there are 

multiple alignments. That is, even though it has 2 or 3 alignments, the alternates are of such low 

alignment that they do not carry weight to the concept of being a repeat. However, that doesn't help 

a user who wants to purely filter reads by number of alignments. To further the selection criteria, 

we include the sheer number of alignment pairs. That way a user can select a range of alignments 

or a specific number and combine that with UR to get reads of interest.  

 

2.2.3. UnMapped  

 

UnMapped Score: A measure of how unmapped the read pair $i$ is. This is both based upon the 

number of alignments and the actual scores of the alignments, but heavily weighted by the scores. 

Range = [0,1].  See equation 3 below.  

𝑈𝑀𝑖 = 1 −
∑ 𝑠𝑖

𝑗𝑚𝑖
𝑗=1

𝑆𝑚𝑖
 

 

An unmapped pair of reads conceptually should have none too few alignments and they should all 

be of low score. This greatly depends on the aligner as most have a reporting threshold for 

alignments. Additionally, a pair of reads with perfect alignment scores would then have a score of 

0 even if there are multiple alignments. In general, as there are more alignments with low scores, 

the UM score increases.  

 

If there are few alignments, this distribution will appear similar to the left-right flipped MI 

distribution. As the proportion of reads with multiple alignments in the data set increases, the MI 

and UM distributions will diverge. This can be used as a general measure to see how many read 

pairs have multiple alignments. 

 

Ideally this metric is used in coordination with the read aligner's alignment reporting parameters. 

Many read aligners have reporting thresholds and or handle multiple alignments differently, thus 

this metric expands that continuum.  In general, we do not want a hard cutoff for reporting 

alignments that possibly affects reads of interest in a dataset. 

 

3. RESULTS 
 

SRAMM can process the alignments of 1M and 10M paired end reads at 101bp per read in less 

than 1 and 7 minutes respectively while using less than 1GB RAM on an Intel(R) Core(TM) i7-

7500U CPU @ 2.70GHz using 2 threads. This includes stat generation, optional filtering, and 

optional graph generation. Due to I/O operations, namely reading the millions of alignments and 

writing statistics for each read, increasing the number of cores does not linearly improve 

performance even with increased memory usage. However, the number of reads stored in memory 

can be increased to reduce the number of I/O batch operations while increasing memory usage, but 

this process is still dependent upon system cache settings. 
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Figure 1. SRAMM metrics on 10M reads from NA12878 

 

Graphs of SRAMM score distributions. 10M 101bp paired end reads were aligned using BWA-

MEM and then processed with SRAMM. From top left to bottom right: MAPQ, MIs, URs, UMs. 

 

3.1. Mapped Identity and Uniquely Mapped Reads 
 

We present results for running SRAMM on 10M 101bp paired end reads from Illumina aligned to 

the hg38 [15] using BWA-MEM. The data is from NA12878 [16] and shows the general 

distribution of MAPQ and the metrics over the 10M reads. It is to be noted that many read pairs 

have multiple alignment pairs and BWA-MEM reported them.  

 

We perform using samtools a MAPQ filter of greater than or equal to 60 and only one primary 

alignment. For BWA-MEM, MAPQ=60 is the maximum reported value. This filter step reduced 

the read count from 10M to 8,817,232 or 8.8M reads. It is common for a read pair to have multiple 

alignment pairs and still report a MAPQ of 60 due to the alternate alignments being low scoring. 

8,870,228 read pairs had at least one alignment pair with a MAPQ of 60 which means 

approximately 53,000 read pairs had multiple alignments yet still had a MAPQ of 60. We then ran 

SRAMM on the resulting reads as seen in Figure 2. 
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Figure 2. SRAMM metrics on NA12878 MAPQ=60, 1 alignment 

 

Graphs of SRAMM score distributions. 8.8M 101bp paired end reads were aligned using BWA-

MEM, filtered using samtools for MAPQ=60, and then processed with SRAMM. From top left to 

bottom right: MAPQ, MIs, URs, UMs. 

 

From this figure it is evident that we filtered for MAPQ=60 and 1 alignment. The Unique-Repeat 

distribution is made up of solely values of 1.0 due to there being only 1 primary alignment. 

However, what is unusual is that the Mapped Identity distribution varies greatly. From the graph, 

most alignments average less than 0.90 or less than 90% sequence identity. Some reads even have 

such a % identity as low as 0.20 yet still are reported as MAPQ=60. This is due to the nature of the 

MAPQ calculation which is heavily dependent upon the quality score of the base in the read. While 

it may be a mismatch to the reference, the quality score is low enough that it does not impact 

MAPQ. Therefore, out of a 101bp read, even if 20 to 30 bps match, the mismatches are of such low 

quality that it can still generate a MAPQ of 60. Therefore, reads with % identities ranging from 

0.20 to 1.0 all can report a MAPQ which may not be desired. An experiment may require high % 

identity which clearly may not be filtered for by using MAPQ. 

 

4. CONCLUSIONS 
 

We developed SRAMM and demonstrated its ability to quickly generate additional mapping 

statistics and related functionality. To date, there are numerous approaches to mapping quality that 
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typically require customization for each application or overhead. Alternatively, SRAMM works on 

read aligner independent output for data examination, visualization, and mapping quality filtering 

of reads. A user can examine an experiment's distributions for various purposes such as comparing 

to previous experiments to validate that they are similar, or any number of filtering operations 

based upon user driven criteria. For example, using re-sequencing data, we can filter out all non-

truly uniquely mapping reads by using a combination of MI and UR scores which is not feasible 

with MAPQ alone. This allows a user to select reads that map with a chosen identity percentage 

and only a primary alignment. Conversely, if we are interested in reads that did not align well or 

suspected repeat reads, we utilize a combination of low MI, low UR, and high UM scores along 

with the number of alignments. This combination of multiple mapping metrics is more versatile 

and informative than using MAPQ alone without being a computationally expensive addition to a 

pipeline. Therefore, our read aligner independent tool can be incorporated into any short read 

pipeline for quality control or filtering of reads for downstream applications. 
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