AI SCRIBES: BOOSTING PHYSICIAN EFFICIENCY IN CLINICAL DOCUMENTATION

Omosalewa Itauma1,2 and Itauma Itauma3

1,2Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Michigan, USA

3DeVos Graduate School of Management, Northwood University, Michigan, USA

\textbf{ABSTRACT}

The increasing demand on healthcare systems has amplified the burden on physicians and other healthcare professionals, with a huge portion of time dedicated to documenting patient encounters. Prolonged charting periods not only contribute to decreased physician productivity but also emerge as a prominent factor in physician burnout. This study investigates the potential of Artificial Intelligence (AI) to mitigate this challenge, focusing on AI-powered medical scribing as a solution to alleviate the burden of traditional charting methods in documentation of patient encounters and improve overall physician productivity. This research contributes to the ongoing discourse on the role of AI in healthcare and seeks to inform healthcare professionals, administrators, and policymakers about the potential benefits of integrating AI-powered medical scribing to improve physician efficiency and mitigate the impact of extensive charting on overall productivity and well-being.

\textbf{KEYWORDS}

Physician Productivity, Artificial Intelligence (AI) scribes, Electronic Health Records, Charting, Physician Burnout

\section{1. INTRODUCTION}

In the ever-evolving landscape of healthcare, the role of physicians and other health care professionals have become increasingly demanding, with a substantial portion of time dedicated to the meticulous task of charting on the electronic health record (EHR) \cite{1,2}. For every hour physicians spend on direct clinical care, up to two additional hours are spent on EHR and administrative related tasks during the clinic day \cite{2}. These tasks are not limited to office hours, with physicians investing an extra one to two hours each night for additional EHR-related and clerical tasks \cite{2}. The advent of electronic health records (EHRs) was intended to streamline documentation processes, yet physicians find themselves grappling with prolonged charting periods, adversely affecting both productivity and overall job satisfaction \cite{1}. This study delves into a transformative solution—Artificial Intelligence (AI)—to mitigate the challenges posed by traditional charting methods. By harnessing the power of AI with AI-powered medical scribing, we aim to not only alleviate the burden of documentation but also create a paradigm shift towards a more efficient and fulfilling healthcare ecosystem.

\section{2. THE CHARTING CONUNDRUM: A DRAIN ON PHYSICIAN PRODUCTIVITY}

As physicians navigate the intricate web of patient encounters, the burden of charting emerges as a formidable obstacle. The time spent on documentation not only hampers their ability to provide
timely and comprehensive care but also erodes into time that could be spent on direct patient care, contributing to diminished overall productivity [2,3]. The ensuing challenge is not merely a matter of time management but also extends to the core of physician-patient relationships and the quality of healthcare delivery. In a typical patient encounter, the patient narrates their problems/concerns and answers questions asked by the physician to obtain comprehensive information about the patient's condition. The physician may chart as the patient is speaking or after the encounter. Charting on a computer while a patient is speaking can introduce several challenges for both the physician and the patient. These challenges include a) divided physician attention where juggling note-taking with listening and understanding makes it more difficult to fully focus on the patient's concerns which can lead to missed information, misunderstandings, increased risk of errors in documentation, and a less effective consultation; b) reduced rapport when the physician is focused on the computer screen, whereby eye contact and nonverbal communication are diminished, potentially impacting the patient's experience and outcomes; c) documentation delays with frequent pauses for charting, disrupting the natural flow of the patient-physician conversation, extending the length of consultation, and limiting the time available for addressing the patient's concerns.

To mitigate the challenges with documentation while seeing the patient, physicians can choose to complete charting after the patient encounter. Problems with this approach include a) missed information due to recalling details from a completed encounter especially for complex cases or lengthy appointments, leading to inaccurate or incomplete documentation, potentially affecting treatment decisions and future care; b) time pressure and rushed documentation trying to meet deadlines for completing medical records, increasing the risk of errors and omissions; and c) incomplete medical records which can negatively impact patient care as well as patient satisfaction and engagement in their own care.

3. CHARTING OVERLOAD AND PHYSICIAN BURNOUT

The ramifications of extensive charting are not confined to reduced productivity alone; it also leads to the alarming rise of physician burnout [4,5,6,7,8]. Data entry in EHRs are often burdensome, time consuming, requiring extensive documentation, with physicians spending hours clicking through menus, entering data, and filling out form fields [5,6,7,8]. This takes away from valuable time they could spend interacting with patients and providing care, leading to decreased job satisfaction [6]. Accurate and detailed documentation is however important to demonstrate the rationale behind treatment decisions, to help protect physicians in case of malpractice claims [9]. Thorough documentation is also important for quality assurance and research, allowing healthcare institutions to track outcomes, identify areas for improvement, and advance medical knowledge. Additionally, maintaining accurate and complete medical records aligns with a physician's ethical obligation to provide the best possible care to their patients. This includes ensuring that all relevant information is readily available to ensure safe and effective treatment. The cognitive load of multitasking, entering accurate, thorough, and complete clinical documentation in an efficient manner in addition to tight schedules and burdensome EHRs contribute to physician burnout [6,7,8]. This emotional and physical toll on physicians, exacerbated by the incessant demand for detailed documentation, jeopardizes their well-being and compromises the very essence of compassionate healthcare [6,7,8]. Addressing the root causes of burnout becomes imperative for sustaining a resilient healthcare workforce. In March 2020, the Department of Health, and Human Services (HHS) issued a report delineating three main objectives to alleviate clinician burdens associated with EHRs that impact patient care: diminish the time and effort needed for clinicians to document health information, streamline compliance with regulatory requirements, and enhance the overall ease of use of EHRs [1,10].
4. **AI AS A SOLUTION TO IMPROVE CLINICAL DOCUMENTATION EFFICIENCY**

Physician productivity can be assessed by patient visit volume in a specified period [11]. The burden of manual charting is acutely felt by physicians who grapple with an increasing caseload and stringent time constraints [12]. The paradox of spending more time on administrative tasks than patient interactions underscores the urgency for innovative solutions.

In this dynamic healthcare landscape, where time is a finite and invaluable resource, AI integration in patient charting offers potential benefits that may revolutionize physician efficiency and redefine the healthcare narrative. By automating routine documentation tasks, AI has the potential to redefine productivity metrics and liberate physicians to focus on the core tenets of clinical decision-making and patient care.

4.1 AI-Powered Scribes

An AI-powered medical scribe, also known as AI scribe, is a technology-driven solution that assists healthcare professionals, particularly physicians, in the documentation and management of patient information. The role of a human medical scribe involves recording patient encounters, transcribing medical information, and managing administrative tasks to allow healthcare professionals to focus more on patient care [15]. AI-powered medical scribes aim to automate and enhance this process using AI technologies.

4.1.1 Efficiency and Effectiveness of AI-Powered Scribes

Clinical documentation solutions introduced over the years to decrease the burden of traditional manual data entry include voice dictation systems, transcription services, and human medical scribes (physical or virtual). Voice dictation systems use advanced speech recognition software to transcribe verbal input from the physician into written text, facilitating the documentation of patient information. Medical transcription services involve the conversion of voice-recorded medical reports dictated by physicians or other healthcare professionals into written text. Medical scribes are specifically present during patient consultations for clinical documentation in real-time while being directly supervised by a physician. They operate under the guidance of the physician and do not have independent responsibilities, but they play a supportive role by assisting with tasks such as charting and other data entry into the EHR to streamline the physician's workflow [15].

AI-powered scribes have been shown to have significant advantages over these methods. In one study, the AI-powered scribe demonstrated a speed approximately 2.7 times greater than both typing and voice dictation for documentation of the patient's history, and for documentation of the physical examination, the AI-powered scribe demonstrated a speed approximately 2.17 times faster than typing and approximately 3.12 times faster than voice dictation [13]. Transcription services are not performed in real time and may have up to a 24-hour turnaround time [18]. Medical scribes decrease the clinical documentation burden but need the presence of an extra person and can be expensive with high turnover rates [14,16,17]. In one study, physicians using medical scribes experienced a 10% increase in productivity with a cost of $98,588 in a year [14]. The AI-powered scribe can execute the tasks handled by medical scribes, simultaneously cutting costs, and minimizing the personnel required in consultation rooms. These advantages have the potential to enhance efficiency, lessening the time physicians dedicate to documentation and opening avenues to broaden healthcare accessibility [16].
5. TECHNICAL IMPLEMENTATION OF AI Scribes

The technical implementation of AI scribes involves a combination of advanced algorithms, data processing methods, and integration with existing healthcare IT infrastructure. AI scribes leverage advanced algorithms to understand and generate human-like text. Natural language processing (NLP) algorithms and deep learning models, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), are commonly used for accurate speech-to-text conversion [19,20]. These models are trained on large datasets of medical conversations to improve accuracy and adapt to diverse accents and speech patterns.

5.1. Data Processing Methods

Efficient data processing is crucial for the accuracy and effectiveness of AI scribes. Data processing involves handling healthcare data, ensuring privacy and compliance with regulations such as the Health Insurance Portability and Accountability Act of 1996 (HIPAA). Enacted in 1996, the Health Insurance Portability and Accountability Act (HIPAA) is a federal law that mandated the establishment of national standards to safeguard confidential patient health information, preventing its disclosure without the patient’s consent or knowledge [21]. The HIPAA Privacy Rule, issued by the US Department of Health and Human Services (HHS), serves as the implementation framework for the stipulations of HIPAA. A primary objective of the Privacy Rule is to ensure the proper protection of individuals’ health information while facilitating the necessary flow of such information for the provision and advancement of high-quality healthcare and the safeguarding of public health and well-being [21].

The effective implementation of AI scribes in healthcare necessitates meticulous attention to data processing methods to safeguard patient privacy and adhere to regulatory frameworks such as HIPAA. The following subsections elaborate on the crucial preprocessing steps involved in handling healthcare data within the context of AI scribes:

5.1.1. Data Anonymization and De-identification

To comply with HIPAA regulations and protect patient confidentiality, healthcare data undergoes rigorous anonymization and de-identification processes. Personal identifiers such as names, addresses, and social security numbers are systematically removed or replaced with pseudonyms, ensuring that the data used by AI scribes cannot be traced back to individual patients [22]. This step is integral in minimizing the risk of unauthorized access and potential breaches while facilitating the ethical use of patient information.

5.1.2. Tokenization for Textual Data

Textual clinical data, rich in medical jargon and sensitive patient information, requires specialized preprocessing techniques like tokenization. Tokenization breaks down medical narratives into smaller units, such as words or subword tokens, enhancing the efficiency of Natural Language Processing (NLP) algorithms in understanding and generating text. This process aids in maintaining the context of medical information while mitigating the risk of exposing sensitive details during data processing [23].

5.1.3. Encryption of Patient Data

The encryption of patient data is a fundamental step in ensuring the security of healthcare information during transmission and storage. Advanced encryption algorithms are applied to
5.1.4. Secure Data Transfer Protocols

In the integration of AI scribes with healthcare IT infrastructure, secure data transfer protocols are implemented to facilitate the exchange of information between different components. The use of secure protocols, such as HTTPS (Hypertext Transfer Protocol Secure), ensures that data transmitted between the AI scribe module and EHR systems remains encrypted and protected against interception by unauthorized entities [24].

5.1.5. Regular Audits and Monitoring

To maintain ongoing compliance with privacy regulations and security standards, healthcare organizations implement regular audits and monitoring of AI scribe systems. Continuous evaluation of access logs, data handling processes, and security protocols helps identify and rectify potential vulnerabilities. This proactive approach is crucial in upholding the integrity of patient data and sustaining trust in AI-assisted clinical documentation [25]. Incorporating these data processing methods not only ensures HIPAA compliance but also establishes a robust foundation for the ethical and secure utilization of AI scribes in clinical settings. By addressing privacy concerns and regulatory requirements, healthcare organizations can confidently embrace AI-driven technologies to enhance physician efficiency in documentation processes.

5.2. Integration with Healthcare IT Infrastructure

The seamless integration of AI scribes into existing healthcare IT infrastructure is essential for widespread adoption. The integration ensures real-time collaboration and data exchange between AI scribes and other healthcare applications [24]. The seamless integration of AI scribes into existing healthcare IT infrastructure is a critical aspect of their successful implementation. This section explores the challenges associated with interoperability and highlights solutions, focusing on the pivotal role of Application Programming Interface (API) integration with EHR systems:

5.2.1. Interoperability Challenges

The diverse landscape of healthcare IT systems often poses challenges in achieving seamless communication and data exchange between different platforms. EHR systems, which serve as the central repositories of patient data, may have varying data formats, standards, and protocols. Interoperability challenges arise when attempting to integrate AI scribe modules, necessitating a comprehensive strategy to ensure effective collaboration and information flow [22].

5.2.2. Standardized Data Formats and Protocols

One key solution to interoperability challenges is the adoption of standardized data formats and communication protocols. Establishing common standards, such as Health Level Seven International (HL7) for data exchange and Fast Healthcare Interoperability Resources (FHIR) for interoperability, facilitates the seamless integration of AI scribes with EHR systems. Standardization promotes consistency in data representation, reducing the complexity of integration efforts and enhancing the interoperability of healthcare IT infrastructure [26].
5.2.3. API Integration

APIs play a significant role in enabling the integration of AI scribe functionalities with EHR systems. APIs act as intermediaries that allow different software components to communicate and share data in a standardized manner. By developing robust APIs, healthcare organizations can establish a secure and efficient communication channel between the AI scribe module and the EHR system. This facilitates real-time data exchange, ensuring that physicians have access to the latest and most relevant patient information during the documentation process [27].

5.2.4. Modular Architecture for Scalability

Implementing a modular architecture enhances the scalability and flexibility of AI scribe integration. Breaking down the integration process into manageable modules enables healthcare organizations to update or replace components without disrupting the entire system. This approach accommodates evolving technology, minimizes downtime, and supports the seamless addition of new features or improvements to AI scribe functionalities [22].

5.2.5. User Interface Integration

Ensuring a cohesive user experience is paramount in the integration of AI scribes with existing healthcare IT interfaces. The user interface should provide a unified platform where physicians can seamlessly transition between AI-assisted documentation and traditional EHR functionalities. A user-friendly interface promotes user acceptance and adoption, contributing to the overall success of AI scribe implementation [28].

5.2.6. Continuous Monitoring and Maintenance

Post-integration, continuous monitoring and maintenance are essential to address any issues that may arise and to adapt to changes in the healthcare IT landscape. Regular updates, patches, and performance evaluations contribute to the sustained functionality and security of the integrated AI scribe system, ensuring its alignment with evolving standards and regulations [27]. By addressing interoperability challenges through standardized data formats, API integration, modular architecture, and user interface considerations, healthcare organizations can seamlessly incorporate AI scribes into their existing IT infrastructure. This approach enhances physician efficiency and contributes to the overall improvement of clinical documentation practices.

5.3 Schematic Representation of AI Scribe Integration

Figure 1 illustrates the seamless integration of AI scribes within the healthcare system, emphasizing the workflow from physician-patient conversation to the completion of a consultation report. The diagram highlights key stages, including speech-to-text conversion, integration with Electronic Health Record (EHR) systems, and the finalization of clinical documentation. The process begins with a physician-patient conversation during a clinical consultation. The physician engages with the patient, discussing symptoms, medical history, and treatment options. As the conversation unfolds, the spoken words are captured and processed through Speech-to-Text conversion using advanced Natural Language Processing (NLP) algorithms. These algorithms enable the accurate conversion of spoken language into text, preserving the context and nuances of medical conversations [31]. The transcribed text is seamlessly integrated with the Electronic Health Record (EHR) system. API integration ensures smooth communication between the AI scribe module and the EHR, allowing for the exchange of relevant patient data. This integration enables real-time access to patient records and ensures that
the AI-generated text aligns with the patient's medical history and existing data within the EHR [27]. The transcribed text forms the basis for the clinical documentation of the patient encounter.

AI scribes assist physicians in generating detailed and accurate documentation, capturing relevant information from the conversation. This step enhances the efficiency of the documentation process and contributes to the completeness and accuracy of medical records. The generated clinical documentation is received by the physician for review and verification. The physician can add any additional details, corrections, or insights based on their professional judgment. After reviewing the document, the physician electronically signs off on the documentation, validating its accuracy and completeness. The finalized documentation forms the basis of the completed consultation report. This comprehensive report serves as a detailed record of the patient encounter, including diagnosis, treatment plans, and any additional recommendations. The completed consultation report is stored securely within the EHR system, contributing to longitudinal patient care, and providing valuable insights for future consultations.

![Figure 1: AI Scribe Integration in Healthcare System](image)

This schematic representation emphasizes the synergy between AI scribes and healthcare professionals in the clinical documentation process. By automating the transcription and initial documentation steps, AI scribes enable physicians to focus more on patient care and less on administrative tasks. The integration with EHR systems ensures that the generated documentation seamlessly aligns with existing patient records, contributing to a holistic and efficient healthcare workflow.

6. OBSTACLES TO IMPLEMENTATION, ETHICAL IMPLICATIONS, AND PRIVACY CONCERNS

The integration of AI-powered medical scribes into the fabric of healthcare practices is not without its challenges. Obstacles include potential biases in AI algorithms, the need for robust validation, data privacy and security concerns, interoperability issues, and the challenges of training healthcare professionals without significant disruptions in workflow [16,25,29].

AI necessitates substantial datasets for training purposes. Ensuring the trust of patients and physicians in the confidentiality of their data is paramount. Organizations are obligated to establish transparent policies outlining the collection, storage, utilization, and sharing of data from patients and end-users [30]. Prior consent is important for collecting any identifiable data, and such consent should explicitly detail how the data will be employed or shared. Organizations should prioritize the utmost levels of safety, reliability, and accuracy in their AI solutions [30]. Robust data security measures are crucial to ensure patient privacy and HIPAA compliance. Training data should accurately represent the population under consideration and organizations should be transparent regarding the diversity of their training data, ensuring efforts to enhance diversity for accurate representation [30]. It is also important for organizations to establish standardized procedures for recognizing implicit bias and preventing machine learning models from assimilating these biases. Moreover, where relevant, organizations should implement protocols for monitoring disparate outcomes, especially those impacting vulnerable patient populations [30].
It is important to ensure that AI scribes are accurate and reliable, and that they do not replace the human element of the doctor-patient relationship. A nuanced understanding of these challenges is imperative for devising strategies to ensure a seamless transition towards an AI-enhanced charting environment.

7. **CONCLUSION**

The potential benefits of AI-powered medical scribes are significant, and it is likely that AI-powered medical scribes will play an increasingly significant role in healthcare in the future. AI scribes can relieve physicians of the burden of tedious documentation, seamlessly capturing the details of patient encounters and improving efficiency in clinical documentation. This not only fosters deeper patient-physician connections but also empowers physicians to make more informed decisions, leading to improved quality of care and enhanced patient satisfaction. Other benefits include improved accuracy in medical records, minimizing the risk of errors and omissions that could compromise patient safety, and enhanced data collection, paving the way for groundbreaking research and personalized medicine. However, ensuring the accuracy and reliability of AI scribes is paramount. This requires rigorous testing and continuous refinement. Additionally, the human element remains irreplaceable, and striking the right balance between AI assistance and physician-patient interaction is key. With careful consideration and ethical implementation, AI-powered medical scribes can usher in a new era of healthcare, where technology and humanity work in harmony to deliver the best possible care to every individual.

REFERENCES

