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ABSTRACT
In this study, we present a secure smart contract-based Verifiable Random Function (VRF) model, addressing the
shortcomings of existing systems. As quantum computing emerges, conventional public key cryptography faces potential
vulnerabilities. To enhance our VRF’s robustness, we employ post-quantum Ring-LWE encryption for generating pseudo-
random sequences and a NTRU lattice-based linkable ring signature scheme. Given the computational intensity of this
approach and associated on-chain gas costs, we propose a hybrid architecture of VRF system where both on-chain
and off-chain can communicate in a scalable and secure way. Our decentralized VRF employs multi-party computation
(MPC) with blockchain-based decentralized identifiers (DID), ensuring the collective efforts of enhanced randomness
and security. We show the security and privacy advantages of our proposed VRF model with the approximated estimation
of overall temporal and spatial complexities. We also evaluate our VRF MPC model’s entropy and outline its Solidity
smart contract integration. This research also provides a method to produce and verify the VRF output’s proof, optimal
for scenarios necessitating randomness and validation. Lastly, using NIST SP800-22 test suite for randomness, we
demonstrate the commendable result with a 97.73% overall pass rate on 11 standard tests and 0.5459 of average 𝑝-value
for the total 176 tests.

KEYWORDS

1 Introduction

Cryptographic protocols, especially in blockchain systems, fundamentally rely on randomness. The
Verifiable Random Function (VRF) [1] is a primary cryptographic utility that produces verifiable
pseudo-random numbers with uniqueness, uniformly distributed randomness property, and proof
of correctness. Applied in areas ranging from lotteries to proof-of-stake [2] and privacy-preserving
protocols, a genuine challenge is developing VRFs that truly emulate randomness. For instance,
Algorand [3] utilizes VRFs for its cryptographic self-selection, orchestrating the formation of
Selected Verifiers (SV) and directing block generation leadership, underscoring VRF’s central role
in decentralized integrity.

The evolving cryptographic landscape underscores the need for VRFs to adapt. Contemporary
cryptographic models, despite their sophistication, face potential vulnerabilities, accentuated by
the advent of quantum computation. Specifically, Shor’s algorithm [4], a potent quantum formula,
threatens the resilience of classical public key cryptographic methodologies. Recognizing the
quantum revolution, there’s a pressing call to incorporate post-quantum cryptographic innovations.
These progressive shifts prioritize not only quantum resistance but also cryptographic efficacy.

As such, the lattice-based cryptographic schemes, which root back to Ajtai’s worst-case to
average-case reduction [5], provide a compelling cryptographic foundation. The Learning With
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Errors (LWE) problem [6] and its ring-based counterpart, Ring-LWE [7], and Small Integer Solution
(SIS) problem (average-case problem in [5]), and Shortest Vector Problem [8] (the most famous
computational problem on lattices), have gained prominence for their inherent resilience against
quantum attacks [9]. The Ring-LWE variant introduces structured noise and structured secrets over
polynomial rings, offering efficiency gains while retaining the security attributes [10].

Ring-LWE distinguishes itself from traditional lattice-based approaches by optimizing compu-
tations and minimizing key sizes, harnessing the algebraic structure of number theoretic rings. In
the post-quantum landscape, where conventional cryptographic constructs falter under quantum al-
gorithms like Shor’s [4], Ring-LWE encryption, with its inherent resistance to quantum decryption
attempts, ensures that encrypted data remains secure even in the face of quantum computational
capabilities.

NTRU, introduced in 1996 [11] by Hoffstein, Pipher, and Silverman, represents a significant
advancement in cryptography, leveraging the complexity of lattice problems such as R-SIS and R-
LWE [12]. Its quantum resistance has positioned NTRU in the NIST Post-Quantum Cryptography
Standardization project [13], marking its relevance in the ongoing transition to quantum-secure
communications.

In the specific context of the decentralized systems like Ethereum, the VRF is also crucial
for consensus algorithms such as validator selections, block validations, and attestations. The
unpredictable randomness demanded by such platforms can be securely achieved using the Ring-
LWE encryption with NTRU linkable ring signature. For instance, when the parties collaborate to
generate a random output collectively in a decentralized environment, the Ring-LWE encryption
and NTRU can provide high randomness and verifiablility, while resistant to external (including
quantum) threats.

However, the Ring-LWE encryption introduces considerable computational overheads. For
blockchain ecosystems, the integration of Ring-LWE can potentially inflate transactional costs
such as gas costs. To alleviate these computational and cost impediments, off-chain computation
emerges as an optimal solution. Within the scope of MPC-based VRFs, off-chain computation
allows for the intricate cryptographic operations to be executed outside the primary blockchain.
This not only conserves on-chain resources but significantly reduces associated gas costs.

To provide the off-chain computations with authenticity and validity, we propose the Decen-
tralized Identifiers (DID) [14]-based linkable ring signature scheme [15] on NTRU lattice. The
signature scheme offers the integrity for the off-chain computation with delegated key generation
from on-chain to off-chain via a key encapsulation mechanism (KEM) [16]. Thus, they serve as a
robust mechanism to attest to the correctness of off-chain computations, ensuring that they adhere
to expected behavior and outputs. Through the DID-based signature scheme with NIZK proof, the
blockchain network can trust the authenticity and accuracy of data derived off-chain, bolstering the
overall trustworthiness of decentralized systems. Our main contributions to this paper are:

– Proposing a post-quantum VRF leveraging DIDs and the linkable ring signature scheme on
NTRU lattice, spotlighting off-chain validation.

– Constructing a smart contract-based VRF using MPC and Ring-LWE, as inspired by Clercq et
al.’s research [17].

– Illustrating our Solidity and Python implementations, algorithmic procedures, and providing
complexity estimates (Fig. 5).

– Delivering security proofs, privacy analyses, and Ring-LWE-based VRF entropy assessments.
– Presenting NIST SP800-22 results, showcasing a 97.73% pass rate across 11 tests and a 0.5459

average 𝑝-value from 176 tests (Fig. 2, 3, 4 and Table 1).

The structure of this paper is presented as follows: Section 2 delves into the intricacies of
VRF and Ring-LWE encryption, establishing foundational context. In Section 3, we outline our
novel VRF model, detailing its formal instantiation with NIZK proof, its decentralized algorithmic
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characteristics, and integrations with smart contracts. Section 4 focuses on the security parameters,
emphasizing the post-quantum adversarial advantage probability and essential VRF key verifi-
cations. Also, Section 5 scrutinizes temporal and spatial complexities. In Section 6, we present
in-depth entropy assessment of our MPC-based VRF, exploring the theoretical bounds of its ran-
domness. Also, we summarize the experimental outcomes from the NIST SP800-22 [18] test suite,
consisting of 11 test cases for randomness evaluation, and illustrate our implementation using
Solidity and Ganache. Finally, we consolidate our discussions and findings in Section 7.

2 Preliminaries

2.1 VRF Constructions

Verifiable Random Functions (VRF) serve as the backbone for various cryptographic protocols
where both unpredictability and verifiability are required. These functions are akin to Pseudo-
Random Functions (PRFs) but come with an added property: they can generate a proof for each
output, ensuring the verifier that a particular random number was produced correctly [1]. Typically,
a VRF consists of three polynomial-time algorithms:

– KeyGen: which outputs a public key 𝑃𝐾 and a secret key 𝑆𝐾 .
– Evaluate: using 𝑆𝐾 and input 𝑥, it produces an output 𝑦 and a proof 𝜋.
– Verify: with 𝑃𝐾 , 𝑥, 𝑦, and 𝜋, it ensures the validity of 𝑦.

The original conception of VRF by Micali et al. [1] pivoted on an RSA-based verifiable
unpredictable signature scheme, leveraging randomness via the Goldreich-Levin hardcore bit con-
struction. Subsequent innovations, such as the number-theoretic exponentiation-based PRF by
Naor and Reingold [19], and theoretical advancements by Joux et al. showing that a Computational
Diffie-Hellman (CDH) problem remain as hard as the discrete logarithm (DL) problem, while the
corresponding Decisional Diffie-Hellman (DDH) problem becomes easy with certain multiplica-
tive groups [20], further enriched the VRF landscape. The discovery of the group is based on the
bilinear pairing methods [21] and led to novel signature-based VRFs like Lysyanskaya’s [22], which
capitalized on prior works and the notion of an admissible hash function (AHF). The rigorous de-
mands for cryptographic strength in hash functions [23, 24] steered research towards constructing
AHFs that hold firm in standard security models [25]. Recently, noteworthy advancements in VRFs
have been made by Tibor and colleagues, innovating AHF schemes that fortify the instantiation of
VRF with large input size and full adaptive security [26–29].

In the blockchain framework, the VRF becomes more pronounced. Their deterministic yet
unpredictable nature is pivotal in consensus algorithms, ensuring fairness and thwarting adversaries
from biasing outcomes. To enhance the fairness, collective efforts for randomness are proposed
using ChaCha20 stream cipher in [30] and game-theoretic principles [31]. Kim et al. also utilized
the de Bruijn sequence [32] with balanced property for VRF construction within blockchain
ecosystems.

However, the looming quantum computing era casts a shadow on these classical cryptographic
systems. Given that VRFs often lean on problems that could be susceptible to quantum algorithms,
such as the DL problem or large prime numbers factorization, there is an imperative to future-proof
these constructs.

Our proposed approach diverges from the conventional methods, by incorporating a blockchain-
based VRF via Multiparty Computation (MPC) with Ring-LWE encryption and NTRU linkable
ring signature. Our VRF scheme utilizes the NTRU lattice cryptography to generate the DID-based
linkable ring signature with VRF proof, which differentiates from the recent post-quantum VRF
instantiaions of XMSS signature-based X-VRF scheme [33] or conventional ring signature-based
VRF scheme [34]. To this end, we aim to provide enhanced post-quantum security, scalability, and
efficiency in random value generation for decentralized systems.
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2.2 Lattice-Based Cryptography

Lattice-based cryptography, heralded as a beacon for post-quantum cryptographic systems, pivots
on the intricate mathematical structures of lattices. This burgeoning field offers dual benefits:
adaptability across varied cryptographic applications and perceived quantum-resilient security.

A lattice 𝐿 is formally characterized as a discrete subgroup of R𝑛. It can be thought of as
the grid generated from taking all integral linear combinations of a set of 𝑛 linearly independent
vectors b1, b2, . . . , b𝑛 in R𝑛. These vectors form a basis for the lattice. Symbolically,

𝐿 (b1, b2, . . . , b𝑛) = {
𝑛∑︁
𝑖=1

𝑥𝑖b𝑖 : 𝑥𝑖 ∈ Z}

From a cryptographic viewpoint, the intractability of certain lattice problems, notably the Shortest
Vector Problem (SVP) and the Learning With Errors (LWE) problem, formulates the bedrock of
the lattice-based cryptography’s security [5, 35].

2.3 NTRU Lattice Crptography

Originally presented at CRYPTO ’96 and further detailed in 1998, NTRU’s efficiency and security
against quantum attacks have made it a noteworthy candidate for post-quantum cryptography. The
algorithm underwent standardization processes, like IEEE P1363.1, and faced cryptanalysis leading
to parameter adjustments. The U.S. patent for the original NTRU system (U.S. patent 6081597)
was released to the public in March 2017 (expired in August 2017) and the various past refinements
are referred to [36].

NTRU Lattice Let 𝜙 ∈ Z[𝑥] be a monic polynomial (i.e., cyclotomic polynomial), and 𝑞 be a
positive integer. The NTRU lattice Λ is constructed using four polynomials 𝑓 , 𝑔, 𝐹, and 𝐺 in the
quotient ring Z[𝑥]/(𝜙). These polynomials form the secret key basis and satisfy the following
congruence, which forms the NTRU equation [37]:

𝑓 𝐺 − 𝑔𝐹 = 𝑞 mod 𝜙 (1)

Provided 𝑓 is invertible modulo 𝑞, we can define the public key polynomial ℎ as:

ℎ← 𝑔 · 𝑓 −1 mod 𝑞 (2)

Detailed algebraic proof of how these equations play the NTRU basis operation is referred to the
Theorem 2 in Appendix A of [38].

Gram-Schmidt Orthogonalization (GSO) The Gram-Schmidt process is a method for orthog-
onalizing a set of vectors in an inner product space, which is commonly the Euclidean space R𝑛.
Given a basis for a lattice given by the vectors b1, b2, . . . , b𝑛 ∈ R𝑛, the Gram-Schmidt process
converts this basis into an orthogonal basis b∗1, b

∗
2, . . . , b

∗
𝑛, where each b∗

𝑖
is orthogonal to all

previous vectors b∗1, . . . , b
∗
𝑖−1. The process works as follows in Algorithm 1:

The set of orthogonal vectors b∗1, . . . , b
∗
𝑛 span the same subspace as the original vectors

b1, . . . , b𝑛. These orthogonal vectors can be easier to work with, especially when performing tasks
like finding shortest vectors in the lattice (the LLL algorithm [39], for instance, uses Gram-Schmidt
orthogonalization as a subroutine). The faster GSO computing algorithm [12] by Lyubashevsky et
al. has made NTRU lattice more practical along with their Compact Gaussian Sampling (CGS) [12],
which is used in this paper’s NTRU-based linkable ring signature scheme in Algorithm 4.
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Algorithm 1 Gram-Schmidt Orthogonalization for NTRU lattice
Require: A set of linearly independent vectors b1, b2, . . . , b𝑛 ∈ R𝑛
Ensure: An orthogonal set of vectors b∗1, b

∗
2, . . . , b

∗
𝑛

1: b∗1 ← b1
2: for 𝑖 ← 2 to 𝑛 do
3: b∗

𝑖
← b𝑖

4: for 𝑗 ← 1 to 𝑖 − 1 do

5: projb∗
𝑗
(b𝑖) ←

(
⟨b𝑖 ,b∗𝑗 ⟩
⟨b∗

𝑗
,b∗

𝑗
⟩

)
b∗
𝑗

6: b∗
𝑖
← b∗

𝑖
− projb∗

𝑗
(b𝑖)

7: end for
8: end for

2.4 NTRU-based Signature Generation

The general NTRU-based digital signature scheme follows the Gentry-Peikert-Vaikuntanathan
(GPV) framework [40] for lattice-based signatures. The scheme’s operation can be summarized as
follows:

Key Generation

1. Public Key: A full-rank matrix 𝐴 ∈ Z𝑛×𝑚𝑞 is generated, where 𝑚 > 𝑛. This matrix 𝐴 generates
a 𝑞-ary lattice Λ.

2. Private Key: A matrix 𝐵 ∈ Z𝑚×𝑚𝑞 is generated, which forms a basis for the lattice Λ⊥ through
the GSO process in Algorithm 1, orthogonal to Λ modulo 𝑞. This means for any vector 𝑥 ∈ Λ
and any vector 𝑦 ∈ Λ⊥, their dot product satisfies ⟨𝑥, 𝑦⟩ = 0 mod 𝑞.

Signature Generation

1. Hash Function: A hash function 𝐻 maps the message 𝑚 to a hash value in Z𝑛𝑞.
2. Initial Signature Vector: An initial signature vector 𝑐0 ∈ Z𝑚𝑞 is computed such that 𝑐0 has a

preimage under 𝐴 and 𝑐0𝐴
𝑡 = 𝐻 (𝑚), where 𝐴𝑡 is the transpose of 𝐴.

3. Close Vector Calculation: The private key matrix 𝐵 is used to compute a vector 𝑣 in Λ⊥ that
is close to 𝑐0.

4. Final Signature: The signature 𝑠 is the difference between the initial signature vector 𝑐0 and the
close vector 𝑣, i.e., 𝑠 = 𝑐0−𝑣. The signature 𝑠 is valid if 𝑠𝐴𝑡 = 𝑐0𝐴

𝑡 −𝑣𝐴𝑡 = 𝐻 (𝑚) −0 = 𝐻 (𝑚),
given that 𝑣 ∈ Λ⊥ and 𝑣𝐴𝑡 = 0.

Verification To verify the signature, one needs to check two things:

1. 𝑠 is indeed a ”short” vector in Z𝑚𝑞 , meaning its entries are small integers, which is a property
required for the security of the scheme.

2. 𝑠 satisfies 𝑠𝐴𝑡 = 𝐻 (𝑚). If both conditions hold, the signature is considered valid.

2.5 Ring-LWE Cryptography

Ring-LWE (Ring Learning With Errors) cryptography is based on the Ring-LWE problem’s hard-
ness, adapted from the Learning With Errors (LWE) problem to polynomial rings. It is designed to
be secure against quantum attacks and efficient for practical use. Typically, Ring-LWE operates over
a ring 𝑅 = Z[𝑥]/( 𝑓 (𝑥)), with 𝑓 (𝑥) being a monic irreducible polynomial, typically 𝑓 (𝑥) = 𝑥𝑛 + 1
for some power-of-two 𝑛, and 𝑞 a prime number. The operations in Ring-LWE are modulo 𝑓 (𝑥)
and 𝑞.
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Encryption and Decryption

– Key Generation: A secret key is a small polynomial 𝑠(𝑥) ∈ 𝑅𝑞. The public key is (𝑎(𝑥), 𝑏(𝑥) =
𝑎(𝑥) · 𝑠(𝑥) + 𝑒(𝑥)), with 𝑎(𝑥) random in 𝑅𝑞 and 𝑒(𝑥) a small error polynomial.

– Encryption: To encrypt a message 𝑚(𝑥), compute the ciphertext (𝑐1(𝑥), 𝑐2(𝑥)) where:

𝑐1(𝑥) = 𝑎(𝑥) · 𝑟 (𝑥) + 𝑒′(𝑥)
𝑐2(𝑥) = 𝑏(𝑥) · 𝑟 (𝑥) + 𝑚(𝑥)

Here, 𝑟 (𝑥) is random and small, and 𝑒′(𝑥) is another small error polynomial.
– Decryption: Decrypt by computing:

𝑐2(𝑥) − 𝑠(𝑥) · 𝑐1(𝑥) = 𝑚(𝑥) + 𝑟 (𝑥) · 𝑒(𝑥) − 𝑠(𝑥) · 𝑒′(𝑥)

The message 𝑚(𝑥) is recovered by correcting the small error term.

VRF Instantiability The Ring-LWE encryption’s security relies on the computational infeasibility
of solving the Ring-LWE problem. Its efficiency benefits from polynomial ring structures that
allow fast multiplication, such as the Number Theoretic Transform (NTT). This Ring-LWE’s
computational efficiency makes it an ideal choice for cryptographic tasks such as pseudo-random
number generation and Verifiable Random Functions (VRF). Explorations merging Ring-LWE
with random number generation have been notably impactful. For instance, Abraham’s study
delineates a robust VRF scheme powered by Ring-LWE, underscoring the dual benefits of speed
and security [41].

Fig. 1. A quantum-secure hybrid system for DID-based verifiable random function incorporating MPC and DIDs, where
off-chain Ring-LWE encryption is executed with the linkable ring signature on NTRU lattice scheme via DKG.

3 Proposed VRF System

3.1 System Architecture

We introduce a novel VRF mechanism crafted for blockchain systems, leveraging Ring-LWE en-
cryption [17] with the DID-based linkable ring signature scheme [15] on NTRU lattice, employing
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Algorithm 2 The main computation process that involves quantum-secure linkable ring signature
on NTRU lattice, generating the VRF output and proof using the commitments of the participants.
The computation is done using multi-party computation that ensures the privacy of the participants’
shares and the correctness of the result.
Require: 𝑟𝑜𝑢𝑛𝑑𝐼𝑑 ∈ Z, 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 ∈ {0, 1}𝑛, where 𝑛 denotes 256-bits.
Ensure: None
1: Require: the 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝐻𝑎𝑠ℎ of the 3 most recent blocks > 0
2: 𝑟𝑒𝑠𝑢𝑙𝑡𝐵𝑦𝑡𝑒𝑠← byte array of length 32
3: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑆𝑢𝑚 ← 0
4: 𝑠ℎ𝑎𝑟𝑒𝑆𝑢𝑚 ← 0
5: for 𝑖 ← 0 to |𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠[𝑟𝑜𝑢𝑛𝑑𝐼𝑑] | − 1 do
6: 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ← 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠[𝑟𝑜𝑢𝑛𝑑𝐼𝑑] [𝑖] .𝑎𝑑𝑑𝑟
7: 𝑠ℎ𝑎𝑟𝑒 ← 𝑠ℎ𝑎𝑟𝑒𝑠[𝑟𝑜𝑢𝑛𝑑𝐼𝑑] [𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡]
8: 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 ← 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠[𝑟𝑜𝑢𝑛𝑑𝐼𝑑] [𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡]
9: 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝐻𝑎𝑠ℎ← keccak256(𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡)

10: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 ← (𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝐻𝑎𝑠ℎ · 𝑠ℎ𝑎𝑟𝑒) mod n
11: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑆𝑢𝑚 ← (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑆𝑢𝑚

+𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡) mod n
12: 𝑠ℎ𝑎𝑟𝑒𝑆𝑢𝑚 ← (𝑠ℎ𝑎𝑟𝑒𝑆𝑢𝑚 + 𝑠ℎ𝑎𝑟𝑒) mod n
13: end for
14: if 𝑠ℎ𝑎𝑟𝑒𝑆𝑢𝑚 ≠ 0 then
15: 𝑚𝑝𝑐𝑅𝑒𝑠𝑢𝑙𝑡 ← ⌊𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑆𝑢𝑚/𝑠ℎ𝑎𝑟𝑒𝑆𝑢𝑚⌋
16: else
17: 𝑚𝑝𝑐𝑅𝑒𝑠𝑢𝑙𝑡 ← 0
18: end if
19: 𝑜𝑛𝑐ℎ𝑎𝑖𝑛𝑆𝑒𝑒𝑑 ← 𝑎𝑏𝑖.𝑒𝑛𝑐𝑜𝑑𝑒𝑃𝑎𝑐𝑘𝑒𝑑 (𝑏𝑙𝑜𝑐𝑘.𝑛𝑢𝑚𝑏𝑒𝑟, 𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟,

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝐻𝑎𝑠ℎ, 𝑚𝑝𝑐𝑅𝑒𝑠𝑢𝑙𝑡)
20: (𝑐, 𝐾) ← 𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑝𝑘𝑜 𝑓 𝑓 ) ⊲ DKG Key Encapsulation
21: Emit: OnchainMpcSeedReady(𝑜𝑛𝑐ℎ𝑎𝑖𝑛𝑆𝑒𝑒𝑑, 𝑐, 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟)
22: Offchain:
23: Cipher texts (𝑐1, 𝑐2) ← rlwe processing(𝑠𝑒𝑒𝑑)
24: 𝑉𝑅𝐹output ← keccak256(𝑐1, 𝑐2)
25: 𝐾 ← 𝐷𝑒𝑐𝑎𝑝𝑠(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑐, 𝑠𝑘𝑜 𝑓 𝑓 ) ⊲ DKG Key Decapsulation
26: 𝑠𝑘′

𝑖
← Decrypt(𝐾, 𝑠𝑘𝑒𝑛𝑐)

27: signature 𝜎 ← NTRU LinkableRingSign(𝑠𝑘′, 𝑠𝑒𝑒𝑑,𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝑅)
⊲ 𝑅 is the set of DID public keys

28: proof 𝜋 ← (𝑉𝑅𝐹output, 𝑆𝑒𝑒𝑑, 𝜎)
29: Off-chain to On-chain: Submit To Blockchain(𝜋)
30: On-chain: VerifySign(𝜋, 𝑅)
31: Emit: ComputationFinished(𝑟𝑜𝑢𝑛𝑑𝐼𝑑, 𝜋)
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a delegated key generation method with KEM [16]. We utilize lattice-based cryptography to gen-
erate random numbers from on-chain seed values in an off-chain environment, where the on-chain
MPC participants collectively contribute to the seed values. The proposed hybrid VRF system is
depicted in Fig. 1. Section 4 and 6.1 delve into a theoretical assessment of the security and entropy
aspects of our VRF scheme.

In Fig. 1, we present a high-level architectural overview of our hybrid VRF system. The process
begins with a distributed generation of the MPC-based seed on a smart contract. Each participant
contributes a share and an associated commitment to generate this seed in Solidity. Upon the
on-chain MPC seed-ready event, an off-chain blockchain listener, utilizing the Web3 protocol, is
invoked and calls the function RLWE enc2() to perform Ring-LWE encryption using the seed. The
resultant ciphertexts 𝑐1 and 𝑐2 are dispatched to the smart contract via the submitRLWEResult
function.

Our contribution is to ensure the integrity and validation of off-chain VRF output from the
Ring-LWE encryption. This led to the adoption of a DID-based linkable ring signature scheme
inspired by Tang et al [15]. Nonetheless, an issue arose due to the absence of an off-chain ring
group 𝑅, whereas the 𝑅 exists in the on-chain that orchestrates MPC-based seed generation.

The issue was resolved through a delegated key generation (DKG) protocol with KEM [16], as
shown in Algorithm 5. As the group forms for the MPC and ring signature operations on-chain,
each participant, denoted as 𝑖, produces two key pairs: (𝑠𝑘𝑖 , 𝑝𝑘𝑖) and (𝑠𝑘 ′

𝑖
, 𝑝𝑘 ′

𝑖
). While (𝑠𝑘𝑖 , 𝑝𝑘𝑖)

is tailored for on-chain tasks, (𝑠𝑘 ′
𝑖
, 𝑝𝑘 ′

𝑖
) is designated as the ”delegation” key pair.

Following this, the selected participant applies the KEM protocol [16] to encapsulate their 𝑠𝑘 ′
𝑖

using the off-chain component’s public key, 𝑝𝑘off. This results in an encrypted symmetric key and
a ciphertext, which is then submitted to the contract. Detecting this event, the off-chain component
decapsulates the received key using its private counterpart 𝑠𝑘off, thereby retrieving 𝑠𝑘 ′

𝑖
.

With the delegated secret key 𝑠𝑘 ′
𝑖
, the off-chain component can now generate the ring signature,

effectively functioning as participant 𝑖. By utilizing 𝑠𝑘 ′
𝑖
, the off-chain component can sign and

simultaneously harness the set of public keys 𝑅 of the on-chain participants. This facilitates any
entity to independently ascertain the ring signature against the aggregated public keys, which
encompasses 𝑝𝑘 ′

𝑖
, thereby validating the integrity and accuracy of the off-chain operations.

3.2 VRF Formal Instantiation:

Given our MPC-based Ring-LWE VRF system, we formalize the functions as:

1. Key Generation: Let D be the domain of all possible security parameters. Then, the function
Gen is represented as:

Gen : D → K ×K, 𝑤ℎ𝑒𝑟𝑒 Gen(1𝜆) = (𝑃𝐾, 𝑆𝐾)

for 𝜆 ∈ D, and (𝑃𝐾, 𝑆𝐾) are the public and private key pairs for participants, respectively.
2. Evaluate: Let S,V be the domains of all possible seeds and VRF system output of the tuple

(𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝑃𝑟𝑜𝑜 𝑓𝜋). Then, the function Eval is represented as:

Eval : S → V, 𝑤ℎ𝑒𝑟𝑒 Eval(𝑆𝑒𝑒𝑑) = (𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝜋)

for 𝑆𝑒𝑒𝑑 ∈ S, and 𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 is the generated output from the Ring-LWE encryption. More
details are covered in Section 3.4.

3. Verify: Let P be the domain of all possible VRF proofs. Then, the function Ver is represented
as:

Ver : P → {TRUE, FALSE}, 𝑤ℎ𝑒𝑟𝑒 Ver(𝜋) = TRUE

if and only if the NIZK proof 𝜋 is valid.
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3.3 Core Computation Processes

The Algorithm 2 articulates the main computation process of our VRF system, based on a private
DID-based MPC seed generation and the Ring-LWE encryption. For off-chain computation’s
integrity and signer’s anonymity, we adapt the DID-based NTRU linkable ring signature system
inspired by Tang et al. [15] along with the delegated key generation (DKG) mechanism with
KEM [16].

This hybrid VRF system starts with the acquisition of a combined block hash derived from
the three most recent blockchain blocks. Subsequent to this, the system instantiates DID keys,
encompassing both the primary and the delegated keys. An essential component of our methodology
is the delegation of keys, which provides the protocol with an encrypted secret key 𝑠𝑘𝑒𝑛𝑐 that
encapsulates the system’s inherent confidentiality needs.

The MPC process is used to derive the weighted sum of each commitment and share, based on
each set of participants for a given round. This sum, in conjunction with the combined block hash,
is used for the generation of a unique on-chain seed. Then, the seed is subsequently broadcasted
on-chain, serving as the seed for the off-chain VRF cryptographic processes that ensue.

In the off-chain domain, the system delves into the core RLWE encryption, deriving cipher
texts (𝑐1, 𝑐2). These cipher texts are then hashed to obtain 256-bit 𝑉𝑅𝐹output via the quantum-
resistant keccak256 function, which encapsulates the randomness generated by the system. Using
the off-chain secret key 𝑠𝑘𝑜 𝑓 𝑓 and the previously delegated encrypted key 𝑠𝑘𝑒𝑛𝑐, the system can
decrypt to obtain the desired 𝑠𝑘 ′

𝑖
. This key is pivotal for the subsequent generation of the DID-

based linkable ring signature on NTRU lattice [15], for our system’s assurance of authenticity and
non-repudiation.

The on-chain verification of the VRF’s output leverages the VRF proof, ensuring that the
output is both verifiable and random, without revealing the intricate details of the participants or
the detailed computations.

In essence, our VRF algorithm embodies a harmonious blend of on-chain transparency and off-
chain cryptographic rigor, ensuring verifiable randomness with robust quantum security strengths.

Algorithm 3 Setup for DID-based NTRU Linkable Ring Signature Scheme
1: procedure Setup(1𝜆, 1𝑁 )

Require: Security parameter 𝜆, number of ring members 𝑁
Ensure: Public parameters 𝑃𝑃, system master private key 𝑀𝑆𝐾
2: Choose 𝑘 > 0 s.t. 𝑛 = 2𝑘
3: Choose prime 𝑞 ≡ 1 mod 2𝑛
4: Calculate parameters 𝑠 and 𝜎
5: Set polynomial ring 𝑅𝑞 = (𝑍𝑞 [𝑥]/(𝑥𝑛 + 1))
6: Obtain 𝑃𝑃 and 𝑀𝑆𝐾:

– The 𝑇𝑟𝑎𝑝𝐺𝑒𝑛𝑁𝑇𝑅𝑈(q,n,s) in [12] generates ℎ ∈ 𝑅𝑞 and short basis 𝐵.
– Select hash functions (𝐻1 : {0, 1}∗ → 𝑍𝑛𝑞 and 𝐻2 : {0, 1}∗ → {0, 1}𝑛)
– 𝑀𝑆𝐾 = 𝐵; 𝑀𝑃𝐾 = ℎ

7: Output public parameters 𝑃𝑃 = (ℎ, 𝐻1, 𝐻2) and keep 𝑀𝑆𝐾 = 𝐵 secret
8: end procedure

3.4 DID-based Linkable Ring Signature on NTRU lattice with VRF Components

Our basic DID-based linkable ring signature scheme on NTRU lattice adapts the framework of
Tang et al. [15]. The linkable ring signature ensures signer ambiguity, permitting verifiers to
recognize a ring participant’s signature without identifying the specific signer but with likability
ensured to prevent malicious double signing. This methodology offers MPC anonymity against
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Algorithm 4 DID-based Linkable Ring Signature Scheme on NTRU lattice
1: procedure KeyGen(PP, DID𝑖 , MSK)

Require: Public parameters 𝑃𝑃, user’s identity 𝐷𝐼𝐷𝑖 , system master private key 𝑀𝑆𝐾 = 𝐵

Ensure: Pair of public/private key (𝑝𝑘𝑖 , 𝑠𝑘𝑖)
2: Calculate the public key: 𝑝𝑘𝑖 = 𝑡𝑖,1 = 𝐻1 (𝐷𝐼𝐷𝑖) ∈ 𝑍𝑛𝑞
3: Use CGS sampling algorithm [12]:
4: Generate (𝑠1, 𝑠2) = (𝑡𝑖,1, 0) − 𝐶𝐺𝑆(𝐵, 𝜎, (𝑡𝑖,1, 0)) such that 𝑠1 + 𝑠2 · ℎ = 𝑡𝑖,1
5: Randomly choose polynomial vectors 𝑠∗1, 𝑠

∗
2 ← 𝐷𝑛

𝜎

6: Return user’s public key 𝑝𝑘𝑖 and private key 𝑠𝑘𝑖 = (𝑠1, 𝑠2, 𝑠∗1, 𝑠
∗
2)

7: end procedure
8: procedure NTRU LinkableRingSign(𝑃𝑃, 𝑅, 𝑚, 𝑠𝑘𝑘)

Require: Public parameters 𝑃𝑃, ring user identity set 𝑅 = {𝐷𝐼𝐷1, 𝐷𝐼𝐷2, . . . , 𝐷𝐼𝐷𝑁 }, message 𝑚 ∈ {0, 1}∗, private
key 𝑠𝑘𝑘 = (𝑠1, 𝑠2, 𝑠∗1, 𝑠

∗
2) for user 𝐷𝐼𝐷𝑘 ∈ 𝑅.

9: Calculate 𝐼 = 𝑡𝑘,1 + 𝑡𝑘,2 ∈ 𝑅𝑞 , with 𝑡𝑘,2 = 𝑠∗1 + 𝑠
∗
2 · ℎ ∈ 𝑅𝑞 .

10: for 𝑖 = 1 to 𝑁 do
11: Randomly select 𝑦𝑖,1, 𝑦𝑖,2 ← 𝐷𝑛

𝜎 , with corresponding vectors for short polynomials in 𝑅𝑞 .
12: end for
13: Compute 𝑣 = 𝐻2

(∑𝑁
𝑖=1 𝑦𝑖,1 + 𝑦𝑖,2 · ℎ, 𝑅, 𝑚, 𝐼

)
.

14: for 𝑖 = 1 to 𝑁 do
15: if 𝑖 ≠ 𝑘 then
16: Set 𝑧𝑖,1 = 𝑦𝑖,1, 𝑧𝑖,2 = 𝑦𝑖,2.
17: else
18: Compute 𝑧𝑖 =

(
𝑠1 + 𝑠∗1 · 𝑣 + 𝑦𝑖,1
𝑠2 + 𝑠∗2 · 𝑣 + 𝑦𝑖,2

)
.

19: end if
20: end for
21: Output signature 𝜎𝑅 (𝑚) = (

(
z𝑖,1, z𝑖,2

)
1≤𝑖≤𝑁 , 𝑣, 𝐼)

22: end procedure
23: procedure VerifySign(𝑃𝑃, 𝑅, 𝑚, 𝜎𝑅 (𝑚))
24: for 𝑖 = 1 to 𝑁 do
25: if NOT (∥𝑧𝑖,1∥ ≤ 2𝜎

√
𝑛 AND ∥𝑧𝑖,2∥ ≤ 2𝜎

√
𝑛) then return ”Invalid”

26: end if
27: end for
28: if 𝐻2 (

∑𝑁
𝑖=1 𝑧𝑖,1 + 𝑧𝑖,2 · ℎ − 𝐼 · 𝑣, 𝑅, 𝑚, 𝐼) = 𝑣 then return ”Valid”

29: elsereturn ”Invalid”
30: end if
31: end procedure
32: procedure LinkSign(𝜎𝑅 (𝑚1), 𝜎𝑅 (𝑚2))
33: Input the two signatures 𝜎𝑅 (𝑚1) and 𝜎𝑅 (𝑚2)
34: Verify if 𝐼 (1) = 𝐼 (2):
35: if 𝐼 (1) = 𝐼 (2) then
36: Output ”Link”
37: else
38: Output ”Unlink”
39: end if
40: end procedure

International Journal on Cryptography and Information Security (IJCIS), Vol. 13, No.4, December 2023

10



passive adversaries and is adaptively secure against chosen message attacks within the random
oracle model. The basic setup is given in Algorithm 3 and the fully detailed procedures consist in
Algorithm 4.

3.5 Delegated Key Generation (DKG)

We introduce a secure process to delegate the capability for an off-chain component to generate
a DID-based linkable ring signature on a NTRU lattice [15] on behalf of an on-chain participant,
without directly revealing any participant’s identity.

Algorithm 5 Delegated Key Generation (DKG) with Off-chain Signature Generation
1: procedure GenerateKeys(∅)
2: (𝑠𝑘𝑖 , 𝑝𝑘𝑖) ← KeyGen() in Algorithm 4
3: (𝑠𝑘′

𝑖
, 𝑝𝑘′

𝑖
) ← KeyGen() in Algorithm 4

4: return (𝑠𝑘𝑖 , 𝑝𝑘𝑖 , 𝑠𝑘′𝑖 , 𝑝𝑘
′
𝑖
)

5: end procedure
6: procedure DelegateKey(𝑠𝑘′

𝑖
, 𝑝𝑘𝑜 𝑓 𝑓 ) ⊲ 𝑝𝑘𝑜 𝑓 𝑓 is the public key of the off-chain component

7: 𝑝𝑎𝑟𝑎𝑚𝑠← 𝑆𝑒𝑡𝑢𝑝(1𝜆)
8: (𝑐, 𝐾) ← 𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑝𝑘𝑜 𝑓 𝑓 ) ⊲ DKG Key Encapsulation
9: 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐾𝑒𝑦 ← Encrypt(𝐾, 𝑠𝑘′

𝑖
)

10: return (𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐾𝑒𝑦 𝑠𝑘𝑒𝑛𝑐 , 𝑐, 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑃𝑃) ⊲ PP from Algorithm 4
11: end procedure
12: procedure OffchainSign(𝑠𝑘𝑜 𝑓 𝑓 , 𝑠𝑘𝑒𝑛𝑐 , 𝑐, 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑃𝑃, 𝑆𝑒𝑒𝑑,𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝑅)

⊲ 𝑅 is the set of DID public keys
13: 𝐾 ← 𝐷𝑒𝑐𝑎𝑝𝑠(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑐, 𝑠𝑘𝑜 𝑓 𝑓 ) ⊲ DKG Key Decapsulation
14: 𝑠𝑘′

𝑖
← Decrypt(𝐾, 𝑠𝑘𝑒𝑛𝑐)

15: 𝑚 ← (Seed, VRF𝑜𝑢𝑡 𝑝𝑢𝑡 )
16: 𝜎 ← NTRU LinkableRingSign(𝑃𝑃, 𝑅, 𝑚, 𝑠𝑘′

𝑖
)

17: 𝜋 ← (𝑉𝑅𝐹output, 𝑆𝑒𝑒𝑑, 𝜎)
18: return 𝜋
19: end procedure

Protocol

i. Every participant 𝑖 from the ring, generates two DID [14] key pairs: (𝑠𝑘𝑖 , 𝑝𝑘𝑖) and (𝑠𝑘 ′
𝑖
, 𝑝𝑘 ′

𝑖
),

as shown in Algorithm 5. The former is intended for on-chain operations while the latter acts
as a “delegation” key pair.

ii. Participants commit both DID 𝑝𝑘𝑖 and 𝑝𝑘 ′
𝑖

to the smart contract.
iii. For the MPC-based seed generation, participants utilize DID 𝑠𝑘𝑖 .
iv. Subsequent to MPC-based seed derivation, a chosen participant derives a KEM key 𝐾 using

the public key of the off-chain component, denoted as DID 𝑝𝑘off. Using 𝐾 , the participant
encrypts them DID 𝑠𝑘 ′

𝑖
and the encrypted key is then submitted to the contract.

v. The off-chain component, upon detecting this event, decrypts the received value using its
private key DID 𝑠𝑘off and consequently obtains DID 𝑠𝑘 ′

𝑖
. This key is then used for generating

the ring signature.

NTRU Linkable Ring Signature with Delegated Key Protocol The off-chain component, with
the delegated DID secret key 𝑠𝑘 ′

𝑖
, can now perform the DID-based NTRU linkable ring signature

generation, effectively acting as participant 𝑖, as shown in Algorithm 5.

i. Utilizing 𝑠𝑘 ′
𝑖
, the off-chain component signs and simultaneously uses the consolidated public

keys of the on-chain participants (inclusive of 𝑝𝑘 ′
𝑖
).
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ii. The non-interactive zero-knowledge (NIZK) proof, ensuring the signature’s validity, is obtained
via NTRU linkable ring signature.

Verification External verifiers can independently verify the NTRU linkable ring signature’s cor-
rectness by using the collective DID public keys (𝑅) in Algorithm 4, ensuring the correctness and
integrity of the off-chain computation.

Algorithm 6 Off-chain Blockchain Listener for Ring-LWE Computation
1: function rlwe processing(𝑠𝑒𝑒𝑑)
2: comment: Assuming LWE takes seed value as a command-line argument
3: 𝑟𝑒𝑠𝑢𝑙𝑡 ← subprocess.run( [”./𝐿𝑊𝐸”, str(𝑠𝑒𝑒𝑑)])
4: if 𝑟𝑒𝑠𝑢𝑙𝑡.returncode ≠ 0 then
5: raise Exception(f”RLWE Encryption failed with error: result.stderr”)
6: end if
7: 𝑐1, 𝑐2← 𝑟𝑒𝑠𝑢𝑙𝑡.𝑠𝑡𝑑𝑜𝑢𝑡.strip()()
8: return Ciphertexts 𝑐1, 𝑐2
9: end function

10: function handle event(𝑒𝑣𝑒𝑛𝑡)
11: 𝑜𝑛𝑐ℎ𝑎𝑖𝑛𝑆𝑒𝑒𝑑 ← 𝑒𝑣𝑒𝑛𝑡 [′𝑎𝑟𝑔𝑠′] [′𝑜𝑛𝑐ℎ𝑎𝑖𝑛𝑆𝑒𝑒𝑑′]
12: 𝑐1, 𝑐2← rlwe processing(𝑜𝑛𝑐ℎ𝑎𝑖𝑛𝑆𝑒𝑒𝑑)
13: 𝑡𝑥 ℎ𝑎𝑠ℎ← 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡. 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.𝑠𝑢𝑏𝑚𝑖𝑡𝑅𝐿𝑊𝐸𝑅𝑒𝑠𝑢𝑙𝑡(c1, c2).transact()
14: 𝑡𝑥 𝑟𝑒𝑐𝑒𝑖𝑝𝑡 ← 𝑤3.𝑒𝑡ℎ.𝑤𝑎𝑖𝑡𝐹𝑜𝑟𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑐𝑒𝑖𝑝𝑡 (𝑡𝑥 ℎ𝑎𝑠ℎ)
15: if 𝑡𝑥 𝑟𝑒𝑐𝑒𝑖𝑝𝑡.𝑠𝑡𝑎𝑡𝑢𝑠 == 1 then
16: print(”Result and proof submitted successfully!”)
17: else
18: print(”Submission failed.”)
19: end if
20: end function

21: function blockchain listener
22: 𝑤3←Web3(Web3.HTTPProvider(’http://localhost:8545’))
23: comment: Assuming contract ABI and address are available
24: 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ← 𝑤3.𝑒𝑡ℎ.contract(address=contract address, abi=contract abi)
25: 𝑒𝑣𝑒𝑛𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟 ← contract.events.OnchainMpcSeedReady.𝑐𝑟𝑒𝑎𝑡𝑒𝐹𝑖𝑙𝑡𝑒𝑟 ( 𝑓 𝑟𝑜𝑚𝐵𝑙𝑜𝑐𝑘 =′ 𝑙𝑎𝑡𝑒𝑠𝑡′)
26: while True do
27: for all 𝑒𝑣𝑒𝑛𝑡 in 𝑒𝑣𝑒𝑛𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟.get new entries() do handle event(𝑒𝑣𝑒𝑛𝑡)
28: end for
29: end while
30: end function

3.6 Off-chain Ring-LWE Computation

The off-chain Ring-LWE Computation is implemented via a blockchain event listener tailored for
the Ethereum platform. For testing purpose of deployment, we use Ganache 1 instead. At a high
level, the listener waits for the OnchainMpcSeedReady event, and upon its detection, invokes
the Ring-LWE encryption procedure. The main components and their sequential behaviors are as
follows:

1. RLWE Processing (rlwe processing function): This function is responsible for the execu-
tion of a external executable (LWE), which handles the Ring-LWE encryption process. Given a
seed value (onchainSeed), the function invokes the executable LWE and captures its output.

1 https://trufflesuite.com/ganache/
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– Error checking is implemented to ensure the encryption process succeeds without hitches.
2. Event Handling (handle event function): Once an event is detected, this function manages

the subsequent steps. The main logic involves:
– Extracting the onchainSeed argument from the event.
– Using the onchainSeed as a seed for the RLWE encryption.
– Transmitting the encrypted result (i.e., c1 and c2) back to the Ethereum contract.
– Monitoring the transaction receipt to confirm if the encrypted result submission was suc-

cessful.
3. Blockchain Listener (blockchain listener function): This is the core function that es-

tablishes a connection to the Ethereum network via the Web3 Python package. The logic flow
includes:

– Initializing a Web3 connection to a local Ethereum node.
– Setting up the smart contract context using its ABI (Application Binary Interface) and

address.
– Implementing a continuous listening loop that actively monitors theOnchainMpcSeedReady

event.
– For each detected event, the handle event function is invoked.

This listener, thus, seamlessly bridges on-chain events with off-chain Ring-LWE encryption
processes, ensuring that encrypted results are promptly returned to the smart contract upon the
trigger of specific events.

Algorithm 7 RLWE enc2 Encryption Algorithm
1: procedure RLWE enc2(a, c1, c2, m, p)
2: encoded m← 𝑚 × 𝑄

2
3: 𝑒1, 𝑒2, 𝑒3 ← knuth yao2() × 3
4: 𝑒3 ← 𝑒3 + encoded m
5: 𝑒1, 𝑒2, 𝑒3 ← fwd ntt2(𝑒1), fwd ntt2(𝑒2), fwd ntt2(𝑒3)
6: 𝑐1 ← 𝑒2 + 𝑎 × 𝑒1
7: 𝑐2 ← 𝑒3 + 𝑝 × 𝑒1
8: 𝑐1, 𝑐2 ← rearrange2(𝑐1), rearrange2(𝑐2)
9: end procedure

3.7 Ring-LWE Encryption Function: RLWE enc2()
TheRLWE enc2() function in Algorithm 7, based on the work [17], defines the encryption operation
based on the Ring Learning With Errors problem. Given a message polynomial 𝑚(𝑥) ∈ 𝑅, a public
key polynomial 𝑎(𝑥) ∈ 𝑅, and a public value polynomial 𝑝(𝑥) ∈ 𝑅, where 𝑅 represents the ring of
polynomials and NTT denotes the Number Theoretic Transform(NTT) [42], the RLWE encryption
process is defined as follows:

1. Encode the message by multiplying it by 𝑄

2 where𝑄 is a system parameter. Let encoded m(𝑥) =
𝑚(𝑥) · 𝑄2 .

2. Randomly sample three error polynomials 𝑒1(𝑥), 𝑒2(𝑥), and 𝑒3(𝑥) from some error distribution.
3. Update 𝑒3(𝑥) as 𝑒3(𝑥) = 𝑒3(𝑥) + encoded m(𝑥).
4. Transform 𝑒1(𝑥), 𝑒2(𝑥), and 𝑒3(𝑥) into the NTT domain.
5. Compute the ciphertext polynomials:

𝑐1(𝑥) = 𝑒2(𝑥) + 𝑎(𝑥) · 𝑒1(𝑥)
𝑐2(𝑥) = 𝑒3(𝑥) + 𝑝(𝑥) · 𝑒1(𝑥)

6. Rearrange the coefficients of 𝑐1(𝑥) and 𝑐2(𝑥) for transmission.
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Fig. 2. The distribution of ones in 128-bit blocks and scattered distribution of VRF seeds and output. The average ratios
of ones were observed as 0.4912 and 0.4934 in the MPC-based seeds and Ring-LWE VRF output, respectively.

4 Security and Privacy

4.1 Assumptions

Let 𝜆 be the security parameter and 𝜖 (𝜆) be the negligible function in terms of the 𝜆. When the
setup phase of the key generation of our VRF system, Gen(1𝜆), is run with input 1𝜆, it outputs DID
public and private keys for each participant. 𝑃𝑟 [·] is the probability of an event.

– Ring-LWE Assumption (Quantum Secure): Given that quantum computers have efficient
algorithms for discrete logarithm and integer factorization problems, but not (currently) for
the Ring-LWE problem, we assume that it’s computationally infeasible for a polynomial-time
quantum adversary to solve the Ring Learning With Errors problem.

– Quantum Random Oracle Model (QROM): The hash function such as keccak256() is
known to be quantum-resistant and behaves as a quantum random oracle, i.e., even quantum
queries to the hash function cannot predict its outputs for new inputs.

– Private Ring Signature Unforgeability: A polynomial-time adversary cannot forge a valid
unique ring signature without knowledge of the private key.

– MPC Security: It’s computationally infeasible for any adversary to predict or influence the
final MPC output unless it controls more than a threshold of the participants.

4.2 Formal VRF Requirements

Uniqueness For a VRF system, uniqueness implies that for any given input, the function con-
sistently yields the same output. That is, for any input message 𝑚, there exists a unique VRF
output.

Proof: Let the function Φ represent our VRF system. Given an input𝑚 (the MPC-based seed in
our case), and the DID key pair (𝐷𝐼𝐷𝑠𝑘 , 𝐷𝐼𝐷 𝑝𝑘) used for the VRF system: ∀𝑚𝑖 , 𝑚 𝑗 ,where 𝑖 ≠ 𝑗 ,

∃! VRFoutput s.t. Φ(𝑚𝑖 , 𝐷𝐼𝐷𝑠𝑘) = Φ(𝑚 𝑗 , 𝐷𝐼𝐷𝑠𝑘) = VRFoutput

Verifiability For a VRF system, verifiability ensures that if a prover produces an output 𝑦 and a
proof 𝜋 for an input 𝑥, then a verifier can check the proof 𝜋 against the public key and confirm that
𝑦 is the correct VRF output for 𝑥.

Proof: Given the Input 𝑚 (the MPC-based seed), VRF output 𝑦, Proof 𝜋, DID Secret key
𝐷𝐼𝐷𝑠𝑘 , Public key 𝐷𝐼𝐷 𝑝𝑘 .

If the prover produces 𝑦 and 𝜋 using 𝑚 and 𝐷𝐼𝐷𝑠𝑘 :

𝑦, 𝜋 = Φ(𝑚, 𝐷𝐼𝐷𝑠𝑘)

International Journal on Cryptography and Information Security (IJCIS), Vol. 13, No.4, December 2023

14



Then, the verifier, using 𝐷𝐼𝐷 𝑝𝑘 , can verify that 𝑦 is the correct VRF output for 𝑚:

∀𝑚, 𝑦, 𝐷𝐼𝐷 𝑝𝑘 , 𝜋, Φ(𝑚, 𝐷𝐼𝐷 𝑝𝑘 , 𝜋) ⇒ 𝑦 = VRFoutput(𝑚)

This signifies that if the verifier utilizes the public key and proof to verify the input, they will
consistently acquire the correct VRF output for that input.

Pseudo-Randomness For a VRF system, pseudo-randomness ensures that the output appears
random and unpredictable. Given a VRF output 𝑦 for an input 𝑥, one cannot distinguish 𝑦 from a
random value.

Proof: Given an Input 𝑚, VRF output 𝑦, Proof 𝜋, Adversary A trying to distinguish 𝑦 from a
random value, without queries to the VRF output 𝑦, the advantage Adv of A in distinguishing 𝑦
from a random value is negligible:

∀𝑚, 𝑦, without queries to y, Adv(A(𝑦)) ≤ 𝜖 (𝜆)

We’ve demonstrated that the MPC-based Ring-LWE VRF system integrated with the DID-based
linkable ring signature on NTRU lattice satisfies the three pivotal properties of a VRF: uniqueness,
verifiability, and randomness. These properties, complemented by the security guarantees from our
previous discussions, affirm that the VRF system is robust and secure.

4.3 MPC-based Seed Integrity

The integrity of the MPC-based seed relies on the commitments made by participants. Under the
assumption of a random oracle model for the hash function, the probability that an adversary can
produce a commitment for a value without knowing that value is negligible. Formally:

Pr[𝑆𝑒𝑒𝑑′ ← A(Commitments) : 𝑆𝑒𝑒𝑑′ = 𝑆𝑒𝑒𝑑] ≤ 𝜖 (𝜆)

4.4 Unforgeability under Chosen Message Attack

For all messages𝑚1, 𝑚2, . . . , 𝑚𝑘 chosen adaptively byA, where signatures 𝜎1, 𝜎2, . . . , 𝜎𝑘 of VRF
outputs are produced, the probability thatA produces a new valid signature 𝜎∗ for a new message
𝑚∗ without knowledge of the DID private key that signed the DID-based linkable ring signature
on NTRU lattice is negligible.

Pr[𝜎∗ ← A(𝑚1, 𝜎1, . . . , 𝑚𝑘 , 𝜎𝑘) : Φ(𝑚∗, 𝜎∗) = True ∧ 𝑚∗ ∉ {𝑚1, . . . , 𝑚𝑘}] ≤ 𝜖 (𝜆)

4.5 Post-Quantum Security

Definitions

– Let 𝑅𝐿𝑊𝐸𝑞,𝜒 be the Ring-LWE problem with modulus 𝑞 and error distribution 𝜒.
– A𝑅𝐿𝑊𝐸 is a polynomial-time adversary A trying to solve the Ring-LWE problem.
– A𝑆𝑉𝑃 is an adversary trying to solve the approximate SVP in ideal lattices.
– 𝛼 is the approximation factor for the SVP problem.

The Learning With Errors problem over Rings Given a random polynomial 𝑎 from a ring 𝑅𝑞

and a ”noisy” product 𝑏 = (𝑎 × 𝑠) + 𝑒 mod 𝑞 where 𝑠 is a secret polynomial and 𝑒 is an error
polynomial drawn from 𝜒, the goal is to recover 𝑠 or distinguish 𝑏 from a random polynomial.
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Fig. 3. Uniformly Distributed VRF outputs. The normalized values were derived from the raw 256-bit values.

Security Proof for RLWE enc2

i. Ring-LWE Assumption: It’s computationally infeasible for a polynomial-time quantum or
classical adversary to solve the Ring-LWE problem or distinguish between a valid Ring-LWE
sample and a random one. ∀ Ring-LWE samples 𝑠,

𝑃𝑟 [𝑠′ ← A𝑅𝐿𝑊𝐸 (𝑎, 𝑏) : 𝑠′ = 𝑠] ≤ 𝜖 (𝜆)
ii. Reduction to SVP: If there exists a polynomial-time algorithm A𝑅𝐿𝑊𝐸 that can solve the

𝑅𝐿𝑊𝐸𝑞,𝜒 problem, then there exists an algorithm A𝑆𝑉𝑃 that can solve the 𝛼-approximate
SVP in ideal lattices in polynomial time. ∀ lattices derived from Ring-LWE samples,

𝑃𝑟 [𝑣′ ← A𝑆𝑉𝑃 (𝐿𝑎𝑡𝑡𝑖𝑐𝑒) : | |𝑣′ | | ≤ 𝛼 × ||𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 | |]

≥ 𝑃𝑟 [𝑠′ ← A𝑅𝐿𝑊𝐸 (𝑎, 𝑏) : 𝑠′ = 𝑠]
Here, 𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is the shortest non-zero vector in the lattice. The 𝛼-approximate SVP requires
finding a vector whose length is within 𝛼 times the shortest vector.

iii. Post-Quantum Security: Given that SVP in ideal lattices is believed to be hard for quantum
computers (there’s no known polynomial-time quantum algorithm for this problem), the security
of Ring-LWE and, in turn, RLWE enc2() remains even in the presence of quantum adversaries.
∀ quantum adversary queries to 𝑅𝐿𝑊𝐸𝑞,𝜒,

𝑃𝑟 [𝑠′ ← A𝑅𝐿𝑊𝐸 (𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝑄𝑢𝑒𝑟𝑖𝑒𝑠) : 𝑠′ = 𝑠] ≤ 𝜖 (𝜆)

Overall, the security of the RLWE enc2() function, as used in our VRF system, hinges upon
the hardness of the Ring-LWE problem, which can be reduced to the hardness of the SVP in ideal
lattices. This provides assurance of the post-quantum security of the function. The formal security
for NTRU signature is referred to [12, Section 4] and [43] for lattice attacks and randomness
properties of NTRU.

4.6 DKG Security

– Confidentiality: Employing asymmetric encryption ensures that 𝑠𝑘 ′
𝑖

remains confidential on-
chain. Only the off-chain component, possessing 𝑠𝑘off, can decrypt this.

– Integrity: The ring signature confirms the integrity of the computation executed by the off-
chain component.

– Redundancy: For backup, multiple participants might delegate their keys. This allows the
off-chain component to choose from any of the provided keys, should one be unavailable.
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– Revocation: A key pair update mechanism allows any participant to revoke or replace their
delegation key pair, if they suspect potential misuse.

– Non-repudiation: The utilization of a specific delegated key for the ring signature holds the
corresponding participant accountable, ensuring they cannot repudiate their involvement.

4.7 DID Privacy (GDPR Compliance)

Decentralized Identifiers (DID) [14] represents a paradigm shift in identity verification, emphasiz-
ing self-sovereign identity control and privacy. In the context of MPC-based VRF, where various
nodes collaboratively generate a random number, DIDs offer an additional layer of obscurity. For
instance, by obfuscating the linkage between real-world identities and their cryptographic counter-
parts, an adversary can’t easily deduce a particular node’s input value. Thus, integrating DIDs can
make the VRF secure from such attempts, reinforcing the privacy of the system. Additionally, the
interoperable nature of DIDs across various platforms and systems augments their utility, enabling
a privacy-preserving environment for VRFs and beyond. With unique DIDs, the system ensures
that participants can prove their identity without revealing any personal data. Our DID-based pri-
vate ring signature scheme in Section 3.4 further ensures that even when a participant signs, their
specific identity remains hidden among the members of the ring. DIDs, as a decentralized identity,
provide users control over their identity without relying on centralized authorities. In this context,
DIDs are used for verification rather than identification, ensuring participants’ actions are verifiable
without revealing their exact identities.

Given the DID-based ring signature and QROM, the ability of any adversary (including quantum
adversaries) to link a signature to a specific DID or to single out any individual signer becomes
negligible. Thus, the system satisfies GDPR2 requirements in terms of unlinkability, inference
protection, and prevention of singling-out. Formally: ∀ DID in the ring,

𝑃𝑟 [DID∗ ← A(𝜎) : DID∗ is the actual signer] ≤ 𝜖 (𝜆)

Fig. 4. 𝑃-value results from the NIST SP800-22 Test Suite

5 Complexity Analysis

In this section, we provide an in-depth complexity analysis of the proposed MPC-based hybrid
VRF system using the Ring-LWE encryption and NTRU linkable ring signature. We break down

2 https://gdpr-info.eu/recitals/no-26/
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the major components and evaluate both their time and space complexities, providing insights into
the system’s efficiency.

5.1 Temporal Complexity

– MPC Seed Generation: The primary operation is hashing, with a complexity ofΘ(𝑘) per hash,
where 𝑘 denotes the fixed output size of the hash. Other basic arithmetic operations (addition,
multiplication, modulo) are executed in constant time, Θ(1). However, these operations are
repeated for each participant, leading to an overall complexity of Θ(𝑛 + 𝑘), where 𝑛 is the
number of participants.

– RLWE enc2() Function: This function involves polynomial multiplication, which predomi-
nantly determines its complexity. With 𝑀 being the polynomial degree, the complexity for
polynomial multiplication is Θ(𝑀 log𝑀). Moreover, NTT and rearrangement operations,
which grow with polynomial size, further contribute to the complexity, falling in the same
ballpark of Θ(𝑀 log𝑀).

– submitRLWEResult() Function: The primary operation in this function is again hashing,
which has a complexity of Θ(𝑘) per hash operation.

– NTRU Linkable Ring Signature Generation: To analyze the temporal complexity of the
DID-based Linkable Ring Signature Scheme on NTRU lattice algorithm, we’ll break down
each procedure and estimate the computational complexity of its steps in Algorithm 4.
a. KeyGen Procedure (see [12, Fig. 3])
• Calculating the public key using 𝐻1 is likely Θ(𝑁), assuming 𝐻1 is a hash function

with linear complexity and N represents the degree of the polynomials or the dimension
of the NTRU lattice.
• The CGS (Convolution Gaussian Sampler) algorithm is typically Θ(𝑁 log 𝑁) due to

the use of convolutions and FFT (Fast Fourier Transform) techniques.
• Randomly choosing polynomial vectors is Θ(𝑁).
• Overall, the complexity of KeyGen is dominated by the CGS step, making itΘ(𝑁 log 𝑁).

b. NTRU LinkableRingSign Procedure
• Calculating 𝐼 involves basic arithmetic operations in 𝑅𝑞 which is Θ(𝑁).
• The loop for 𝑖 = 1 to 𝑛 involves selecting polynomial vectors, each of which is Θ(𝑁),

resulting in Θ(𝑁𝑛).
• Computing 𝑣 with 𝐻2 is Θ(𝑁𝑛) assuming linear complexity for 𝐻2.
• The second loop also has Θ(𝑁𝑛) complexity due to vector arithmetic in each iteration.
• Thus, the overall complexity of NTRU LinkableRingSign is Θ(𝑁𝑛).

c. VerifySign Procedure
• The loop iterating over 𝑛 items and checking norms of vectors is Θ(𝑁𝑛), assuming

constant time for norm checking.
• The final conditional statement involves a hash computation and arithmetic operations

in 𝑅𝑞, which are Θ(𝑁𝑛).
• Hence, the VerifySign procedure is Θ(𝑁𝑛).

d. LinkSign Procedure
• This procedure involves a simple comparison of the elements 𝐼 (1) and 𝐼 (2) from two

signatures, which is Θ(1).
• Therefore, the LinkSign procedure has constant complexity, Θ(1).

In conclusion, the most computationally intensive part of the NTRU linkable signature gener-
ation algorithm is the NTRU LinkableRingSign and VerifySign procedures in Algorithm
4, both of which have a complexity of Θ(𝑁𝑛). The KeyGen procedure, while involving a log
factor due to the CGS algorithm, is generally less intensive for typical parameter sizes. The
LinkSign procedure is the least intensive with constant complexity.
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– Aggregate Time Complexity: The combined time complexity, accounting for all the afore-
mentioned components, can be expressed as:

Θ((𝑁 + 1)𝑛 + 2𝑘 + 𝑀 log𝑀 + log 𝑝)

Fig. 5. Log-scaled Complexity Contributions in Hybrid VRF System.

5.2 Space Complexity

The space complexity of cryptographic systems is largely influenced by the data structures and
variables used during computation.

– MPC Seed Generation: Given its hashing nature, it would require space proportional to the
number of participants, i.e., Θ(𝑛).

– RLWE enc2() Function: Being polynomial-centric, it demands space proportional to the
polynomial degree, leading to a space complexity of Θ(𝑀).

– submitRLWEResult() Function: This function, being related to hashing and data verification,
would require a space complexity of Θ(𝑘), which is the output size of the hash.

– NTRU Linkable Ring Signature Generation: The space complexity analysis of the ”DID-
based Linkable Ring Signature Scheme on NTRU lattice” algorithm is as follows:
1. KeyGen Procedure: Stores polynomials in Z𝑛𝑞, leading to a space complexity of Θ(𝑁).
2. NTRU LinkableRingSign Procedure: Requires space for 𝑛 identities and 2𝑛 vectors of

size 𝑁 each, resulting in Θ(𝑁𝑛).
3. VerifySign Procedure: Operates on 𝑛 pairs of vectors, each of size 𝑁 , contributing Θ(𝑁𝑛)

to the space complexity.
4. LinkSign Procedure: Checks if two signatures are linked, depending on the size of the

signatures, which is Θ(𝑁𝑛).
Thus, the dominant term in the space complexity for this algorithm is Θ(𝑛), reflecting the
storage requirements for the vectors and signature components.

– Aggregate Space Complexity: The combined space complexity, taking into account all the
components mentioned, can be articulated as:

Θ(𝑛 + 𝑘 + 𝑀)
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5.3 Efficiency Approximation

From our analysis, it’s evident that the efficiency of the MPC-based Ring-LWE VRF system is
predominantly influenced by the number of participants (𝑛) and the polynomial degree (𝑀). The
constants 𝑘 and 𝑝 play a role but have a fixed impact due to their constant nature. For optimal system
performance, it’s imperative to manage the size of 𝑛 and 𝑀 in accordance with the computational
capabilities of the deployment environment. This becomes particularly crucial if the system is
intended for scenarios with frequent operations or in environments with constrained computational
resources.

To approximate and highlight the dominant complexities derived in Section 5.1, 5.2, we first
need to assign specific values to our variables: 𝑘 , 𝑛,𝑀 , 𝑝, and 𝑁 . These values are for approximation
purposes, and in a real-world scenario, they might vary.

– 𝑘 (hash output size) = 256 (typical for cryptographic hashes)
– 𝑛 (number of participants) = 10
– 𝑀 (polynomial degree) = 1024 (example size for some RLWE operations)
– 𝑝 (modulus in group) = A large prime number with around 2048 bits
– 𝑁 (dimension of NTRU lattice) = 512 (example size for NTRU signature generation operations)

Given that log2(2048) is approximately 11, we’ll assume log 𝑝 is around 11 for our computa-
tions.

With these values, we can compute the individual complexities:

– Hashing: Θ(𝑘) = 256
– Looping over participants: Θ(𝑛) = 10
– Polynomial operations: Θ(𝑀 log𝑀) = 1024 × 10 = 10240
– Exponentiations: Θ(𝑛 × log 𝑝) = 10 × 11 = 110
– Single exponentiation: Θ(log 𝑝) = 11
– NTRU Vector arithmetic: Θ(𝑛 × 𝑁) = 5120

Using a logarithmic function to scale the above complexities, we derive the following approx-
imations according to the previous complexity analysis. Fig. 5 delineates these approximations,
accompanied by a comprehensive summary table.

– Hashing: log2(256) ≈ 8
– Looping over participants: log2(10) ≈ 3.3
– Polynomial operations: log2(10240) ≈ 13.3
– Exponentiations: log2(110) ≈ 6.8
– Single exponentiation: log2(11) ≈ 3.5
– NTRU Vector arithmetic: log2(5120) ≈ 12.3

6 Evaluation and Deployment

6.1 Entropy Approximation

To estimate the entropy of our hybrid VRF system, we can consider the randomness generated by
the VRF system to be a random variable 𝑋 that takes values in the range [0, 2256 − 1]. The entropy
of 𝑋 can be estimated using the probability distribution function (PDF) of 𝑋 . The PDF of 𝑋 can
be derived as follows:
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Table 1. Summary of NIST SP800-22 Test Suite Results

Test Case Name Total Tests Average P-Values Pass Fail Pass %
Approximate Entropy Test 16 0.3929 16 0 100.0

Frequency Test within a Block 16 0.4246 16 0 100.0
Cumulative Sums Test 16 0.4107 16 0 100.0

Discrete Fourier Transform (Spectral) Test 16 0.5096 16 0 100.0
Frequency (Monobit) Test 16 0.4883 16 0 100.0

Linear Complexity Test 16 0.6370 15 1 93.75
Test for the Longest Run of Ones in a Block 16 0.5632 16 0 100.0
Non-overlapping Template Matching Test 16 0.8817 16 0 100.0

Overlapping Template Matching Test 16 0.6907 13 3 81.25
Runs Test 16 0.4968 16 0 100.0
Serial Test 16 0.5087 16 0 100.0

Total 176 0.5459 172 4 97.73

i. The hybrid VRF system generates a Ring-LWE encryption [17] from a seed value. The seed
value is assumed to be uniformly distributed and independent of all other variables. Thus, the
seed value has a PDF that is a uniform distribution over the range [0, 2256 − 1].

ii. The Ring-LWE encryption and the NTRU linkable ring signature generation by the off-chain
computation are deterministic functions of the seed value. Thus, their PDF are the same as the
PDF of the seed value.

iii. The hybrid VRF system constructs the randomness using a distributed MPC [44] approach,
where multiple participants collaborate to generate the randomness. The randomness is con-
structed as a weighted sum of commitments made by the participants. The weights used in the
sum are determined by the shares of the participants.

iv. The commitments made by the participants are assumed to be uniformly distributed and
independent of all other variables. Thus, each commitment has a PDF that is a uniform
distribution over the range [0, 2256 − 1].

v. The weights used in the sum are determined by the shares of the participants. The shares are
assumed to be fixed and independent of all other variables. Thus, each share has a PDF that is
a delta function at its value.

vi. The weights used in the sum are normalized to ensure that the resulting randomness is in the
range [0, 2256 − 1]. Thus, the PDF of the resulting randomness is a truncated distribution of
the sum of the commitments, where the truncation is at the value 2256 − 1.

Let 𝐶𝑖 be the commitment made by participant 𝑖, and let 𝑆𝑖 be the share of participant 𝑖. Let 𝑅 be
the resulting randomness generated by the hybrid VRF system. Let 𝑛 be the number of maximum
participants of the VRF MPC smart contract. Then, the PDF of 𝑅 is given by:

𝑃𝐷𝐹𝑅 (𝑟) =
1
𝑍

∫ 2256−1

0

(
𝑛∏
𝑖=1

𝑃𝐷𝐹𝐶 (𝐶𝑖)
)
× 𝛿

(
𝑟 −

∑𝑛
𝑖=1𝐶𝑖 · 𝑆𝑖∑𝑛

𝑗=1 𝑆 𝑗

)
𝑈 (0, 2256 − 1) (𝑟)𝑑𝑟 (3)

where𝑈 (𝑎, 𝑏) is the uniform distribution over the range [𝑎, 𝑏], and 𝑍 is the normalization constant
given by:

𝑍 =

∫ 2256−1

0

(
𝑛∏
𝑖=1

𝑃𝐷𝐹𝐶 (𝐶𝑖)
)
𝑈 (0, 2256 − 1) ×

(∑𝑛
𝑖=1𝐶𝑖 · 𝑆𝑖∑𝑛

𝑗=1 𝑆 𝑗

)
𝑑𝑟 (4)

To calculate the entropy of our hybrid VRF system, we need to first calculate the Shannon entropy
[45] of the 𝑃𝐷𝐹𝑅 (𝑟) formula. The Shannon entropy is given by the following formula:

𝐻 = −
∫ 2256−1

0
𝑃𝐷𝐹𝑅 (𝑟) log2(𝑃𝐷𝐹𝑅 (𝑟))𝑑𝑟 (5)
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Using the definition of 𝑃𝐷𝐹𝑅 (𝑟), we have:

𝐻 = −
∫ 2256−1

0

[
1
𝑍

∫ 2256−1

0

(
𝑛∏
𝑖=1

𝑃𝐷𝐹𝐶 (𝐶𝑖)
)
× 𝛿

(
𝑟 −

∑𝑛
𝑖=1𝐶𝑖 · 𝑆𝑖∑𝑛

𝑗=1 𝑆 𝑗

)
𝑈 (0, 2256 − 1) (𝑟)𝑑𝑟

]
× log2

[
1
𝑍

∫ 2256−1

0

(
𝑛∏
𝑖=1

𝑃𝐷𝐹𝐶 (𝐶𝑖)
)
× 𝛿

(
𝑟 −

∑𝑛
𝑖=1𝐶𝑖 · 𝑆𝑖∑𝑛

𝑗=1 𝑆 𝑗

)
𝑈 (0, 2256 − 1) (𝑟)𝑑𝑟

]
𝑑𝑟

(6)

This is a complex expression due to the nested integrals and delta function. Now, making use of
the properties of the delta function:∫ 2256−1

0
𝑓 (𝑟)𝛿(𝑟 − 𝑎)𝑑𝑟 = 𝑓 (𝑎) (7)

We can simplify our expression for entropy. Additionally, as the commitments 𝐶𝑖 are uniformly
distributed over [0, 2256 − 1], their PDF is:

𝑃𝐷𝐹𝐶 (𝐶𝑖) =
1

2256 (8)

Substituting this in, the entropy formula simplifies further:

𝐻 = −
∫ 2256−1

0

(
1
𝑍

(
1

2256

)𝑛
𝑈 (0, 2256 − 1) (𝑟)

)
× log2

(
1
𝑍

(
1

2256

)𝑛
𝑈 (0, 2256 − 1) (𝑟)

)
𝑑𝑟 (9)

Given that𝑈 (0, 2256 − 1) (𝑟) = 1 for 𝑟 in [0, 2256 − 1], this can be further simplified to:

𝐻 = −
(

1
𝑍

(
1

2256

)𝑛)
log2

(
1
𝑍

(
1

2256

)𝑛)
× 2256 (10)

This is the final specific formula for the estimated entropy of 𝐻.

6.2 Randomness Evaluation

The NIST SP800-22 [18] test suite provides a comprehensive analysis of the randomness charac-
teristics of binary sequences. For our MPC-based hybrid VRF system with RLWE encryption and
NTRU linkable ring signature, we subjected its output data to the tests within this suite. Specifi-
cally, we’ve selected 11 of the 15 standard tests, excluding the ‘Binary Matrix Rank Test’, ‘Maurer’s
Universal Statistical Test’, ‘Random Excursions Test’, and ‘Random Excursions Variant Test’ due
to incompatibility with our data patterns.

The overall performance, as evidenced by the summary Table 1 and Fig. 4, is highly com-
mendable. All tests produced an average 𝑝-value uniformly distributed within the range [0, 1]
above the significance level of 0.01, with average values around the 0.5 mark. Such results denote
excellent randomness, as a perfectly random sequence would yield an average 𝑝-value of 0.5. The
‘NonOverlappingTemplate’ test even achieved an outstanding average 𝑝-value of 0.881706.

Furthermore, out of the 176 individual tests performed across all categories, only 4 have failed,
resulting in an overall pass rate of approximately 97.73%. It’s worth noting the ‘LinearCom-
plexity’ test exhibited a single failure, and the ‘OverlappingTemplate’ test recorded three. Yet, a
𝑝-value falling outside the expected threshold is not an critical indictment of the system’s overall
randomness, but rather an indication of certain statistical outlier instances in specific scenarios.

In essence, our MPC-based Ring-LWE VRF system with NTRU linkable ring signature exhibits
reliable performance in terms of randomness, as demonstrated by the NIST SP800-22 test suite
results. This affirms the system’s robustness and suitability for applications demanding high-quality
random sequences.
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6.3 System Deployment

We used Ganache to deploy our hybrid VRF system based on Truffle and Remix environment, which
is a personal blockchain that allows to test and deploy smart contracts on a local network without
incurring the cost and time delay associated with deploying on the main Ethereum network. The
unique contract address, comprised of 160 bits, is represented by the hexadecimal value ”0xe256
1068 e91d 66db 8ecc 3c56 b695 03ce 1593 4f60”. Concurrently, the contract creation transaction
hash is given by ”0xc9a9 39b8 286d 0e01 fcf8 edd3 b563 2389 0173 81b5 838f 65c2 f0f7 b27f
a637 2654”. The execution of the creation transaction necessitated the expenditure of 3, 050, 857
gas units. Fig. 3 provides a visual representation of the output VRF distribution, where the uniform
distribution property is observed for both the MPC-based VRF on-chain seeds and the final R-LWE
VRF outputs. Fig. 2 shows more characterized uniform distribution of ones in histogram along
with scattered dispersion of the generated MPC-based seeds and Ring-LWE VRF outputs. Fig. To
illustrate as an example, the 256-bit VRF output value was ”0x2865 7095 a002 2a9a 64fe f449 29e1
1aee b56c 39cd bcf4 f14d f13c 1c5b f18b 6a5c” when the MPC-based on-chain seed was given as
”0x5caa 7f6e 442b a853 8593 bb1f a85a 8894 5179 e846 15d5 f8cb 8ff6 a550 7091 3e59”.

7 Conclusion

In response to the emerging threats posed by quantum computing on classical cryptographic pro-
tocols, this work introduces a novel and hybrid Verifiable Random Function (VRF) framework
tailored for blockchain systems. By harnessing the post-quantum security of Ring-LWE encryp-
tion and linkable ring signature on NTRU lattice, we established a model that robustly generates
pseudo-random sequences, maintaining security in the face of quantum challenges. Recognizing
the computational intensity and the consequent on-chain gas costs due to the Ring-LWE encryption
and NTRU linkable signature, a hybrid architecture was proposed. This architecture adaptively in-
tegrates the on-chain seed generation and the subsequent off-chain intensive computations for VRF
evaluation and proof generation, with the validity proof through the DID-based linkable ring signa-
ture scheme on NTRU lattice and delegated key generation mechanism for off-chain computations.
By incorporating multi-party computation (MPC) with blockchain-based decentralized identifiers
(DID), our VRF system magnifies its collective randomness and fortifies its security with privacy.
The subsequent evaluations underscore the significant security and privacy merits of our proposed
model while presenting empirical evidence of its randomness through the NIST SP800-22 test suite.
Our VRF model has demonstrated outstanding randomness performance, achieving a remarkable
97.73% overall pass rate on 11 standard tests and 0.5459 of average 𝑝-value for the total 176 tests.
This attests that our VRF scheme is not only theoretically robust but also practically relevant for
scenarios requiring verifiable randomness in blockchain environments.
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