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Abstract
In this work, we present a universal whitening algorithm using n-qubit permutation matrices to

remove the imperfections in commercial random number generators without compression. Specifi-

cally, we demonstrate the efficacy of our algorithm in several categories of random number generators

and its comparison with cryptographic hash functions and block ciphers.
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I. INTRODUCTION

Whitening algorithms have demonstrated remarkable improvement in the quality of all

kinds of random number generators [1]. It was shown that the raw random numbers fail some

of the statistical randomness tests that pass after the application of whitening algorithms. In

traditional whitening algorithms, linear combination of the raw random number sequences

with the benchmark random sequence resulted in increased variance of the sequence and

thus the quality of the randomness [1]. The sole objective of a whitening algorithm is to

improve the quality of the random number generators.

Random number generators can be categorized depending upon the notion of random-

ness [2]: 1. Deterministic or pseudo-random number generators (PRNGs). 2. Epistemic or

classical true random number generators (TRNGs). 3. Ontic or quantum random number

generators (QRNGs). Recently a general trend towards QRNGs can be seen in the commer-

cial random number market [3] because of their potential to harness random numbers from

rather simple and intrinsic random quantum phenomena as compared to the complex chaotic

classical phenomenon in classical TRNGs [4] and deterministic PRNGs [5] that are prone

to entropic starvation in real-world applications. That said, all three categories of random

number generators are reported as imperfect due to manufacturing bias or technological

imperfections [6].

Among random number generators, PRNGs are most commonly used (e.g. C++ rand()

function, Linux/dev/urandom (random)). Several other PRNGs have been proposed for

resource contrained IoT devices. Baldanzi et al. recently presented a cryptographically

secure deterministic random bit generators (DRBGs) by analyzing different cryptographic

algorithms, such as SHA2, AES-256 CTR mode, and triple DES. In 2020, James et al. re-

viewed high-quality PRNGs on the basis of Kolmogorov–Anosov theory of mixing in classical

mechanical systems. Xorshift is a special PRNG under non-cryptographically secure ran-

dom number generators. The biggest issue with the PRNGs is the limited entropy injected

through seeds resulting in the situation of entropic starvation in real-world applications [7].

The low entropy problem was addressed using hardware-based classical TRNGs that were

shortly substituted by QRNGs because of the simplistic phenomenon and ontic nature of the

randomness [8]. Remarkable progress has happened over the years in terms of speed, size,

cost, self testable in the field of QRNGs. Several commercial QRNGs are available in the
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market in several forms factors like PCI cards based on IDQ and Quintessence labs, USB,

chip etc. Commercial QRNGs require postprocessing using some whitening algorithms to

remove manufacturing biases in the outputs [6].

There are several postprocessing algorithms developed for improving specific random

number generators [9]. Our motivation is to devise a universal algorithm that can work with

every random number generator. Our algorithm utilizes the huge information space associ-

ated with the n-qubit permutation matrices to remove the bias or higher-order correlations

among the generated random number sequence. Permutation matrices have been efficient

in expanding entropy, maintaining Shannon perfect secrecy, and fundamental in laying the

foundation of the quantum-safe cryptography [10]. Permutation matrices can be realized

using traditional classical as well as quantum computing systems. Hence, any algorithmic

development with permutation matrices offers huge agility in the current as well as future

cryptographic infrastructure.

In the present work, we demonstrate the action of an n-qubit permutation matrices-based

non-deterministic whitening algorithm in removing bias and other defects in commercial

PRNGs, classical TRNGs and QRNGs. In particular, we analyse the efficacy of the whitening

algorithm in improving randomness parameters of the popular PRNGs (/dev/urandom,

/dev/random, C++ rand() function), ring oscillator-based classical TRNGs and commercial

QRNGs, and compare it with cryptographic hash functions (SHA-256), block ciphers (DES-

CBC, AES-256-CTR). We demonstrate that our algorithm works in these scenarios without

compressing the random data.

The paper is organized in the following way. In Sec.(II), we recapitulate the set of

n-qubit permutation matrices and the generation of an n-qubit permutation matrix using

QRNG data from the Qosmos (QNu Labs Entropy-as-a-Service). In Sec.(III), we discuss the

universal whitening algorithm using the generated permutation matrices. In Sec. (IV), we

present our results in the following scenarios, A. PRNGs. B. Comparison with Cryptographic

Hash functions C. Comparison with Block cipher DES-CBC and AES-256-CTR. D. TRNG.

E. QRNGs. Finally, we conclude in Sec.(V) with some future offshoots of the present

analysis.

International Journal on Cryptography and Information Security (IJCIS), Vol. 14, No.1, March 2024

3



II. PRELIMINARIES

Some definitions and software we have used to test the data created by our algorithm

are described now -

Whitening Algorithms: A whitening algorithm is a technique that is applied on a stream of

random numbers (entropy stream) which reduces the bias and correlation for the data (can

be in the form of bytes or individual bits or both) and improves the random characteristics

for the stream. In many of the commonly used whitening algorithms, multiple input bits

are used to create a single output bit, and thus the size of the data reduces. As we will see

in the following section, this is in contrast with our whitening algorithm which preserves the

size of the data and the algorithm is non-deterministic in nature. Some famous whitening

algorithms are-

• XOR: In this technique, two streams of random numbers are used to create a single

entropy stream. One bit is taken from each stream and their exclusive OR is taken to

give the output bit. Two bits are used up to create one bit here. This is not efficient as

the length of the first stream should be the same as the length of the second stream.

• Cryptographic Hash Functions: Various cryptographic hash functions exist which also

improve the randomness of the entropy stream. These hash functions (e.g. SHA-256,

SHA-512 etc.) reduce the size of the output data. Hence, it decreases the possible

throughput. This is currently the well-established technique for achieving information-

theoretic security in QRNG.

• Von Neumann’s Technique: This is a simple technique in which bits of the input stream

are considered two at a time, if the two bits are the same (either ‘00’ or ‘11’) they

are discarded, if the bits are ‘01’ or ‘10, then the output bit is ‘0’ or ‘1’ respectively.

It can be seen that this technique uses more than two bits on average to generate a

single bit of the output. Hence, the possible throughput decreases.

ENT Randomness Test: This is a program used to test the randomness of a random number

sequence [11]. It can be used in two modes - the bit mode which works by considering

chunks of single bits, or the byte mode which considers data to be chunks of 8 bits at a

time. For all our testing, we have worked with the byte mode. This test gives results for five
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parameters related to random data on the basis of which the quality of the random numbers

being tested can be gauged. These five parameters are - entropy, chi-square distribution,

arithmetic mean, Monte Carlo approximation of π, and serial correlation coefficient. By

comparing the values of these parameters with their expected value for truly random data,

the quality of the random number generator is judged. Note that these tests are statistical

in nature and hence give more accurate results for larger sizes of the input stream. Keeping

this in mind, all the data we tested on was large in size (100MB - 1GB of random numbers).

NIST Statistical Test Suite: This is set of 15 tests (and various sub-tests) [12] devel-

oped by the National Institute of Standards and Technology, USA. It was developed after

DES was cracked to choose today’s AES. [13]. It provides a comprehensive set of tests for

which a P-value is output. Higher P-values correspond to better-quality random numbers (a

P-value of 0 corresponds to perfectly non-random numbers while a P-value of 1 corresponds

to perfect randomness) and high-quality random numbers should be able to pass all of these

tests.

III. WHITENING ALGORITHM

We have used a variant of the entropy expansion algorithm [14] for the purpose of whiten-

ing random data from various sources. This algorithm breaks the input data (which here

is the bit-string corresponding to the binary content of the files under consideration) into

chunks and then multiplies the chunk with a randomly selected permutation matrix (a ma-

trix in which each row and each column has exactly one non-zero entry equal to one) to

create the output chunk. For example, if the input chunk is ‘0001’ which is to be multiplied

with the permutation matrix shown, below, the output chunk will be ‘0010’.
1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

×

0

0

0

1

 =


0

0

1

0


The output chunks are then concatenated to form another bit-string which is the binary

content of the output file. For the generation of permutation matrices, we have used the

Fisher-Yates shuffle algorithm, which is now given in the form of pseudocode.
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Note that the generation of the matrices has a random step to it that comes from a QRNG

(’RandomInt(1,N)’ in the pseudocode) which is the reason why this whitening algorithm is

not deterministic.

Require: RandomInt(1,N) returns a random integer between 1 and N (inclusive) when

called (it is generated by an n-bit quantum random number where N = 2n); Swap(a,b)

swaps the values of a and b

Ensure: P is a random permutation matrix

1: i← 1

2: while i ≤ N do

3: K[i]← RandomInt(1,N)

4: S[i]← i

5: j ← 1

6: while j ≤ N do

7: P [i][j]← 0

8: j ← (j + 1)

9: end while

10: i← (i+ 1)

11: end while

12: i← N

13: while i > 0 do

14: p← K[i]

15: Swap(S[p], S[i])

16: i← (i− 1)

17: end while

18: i← 1

19: while i ≤ N do

20: P [i][S[i]]← 1

21: i← (i+ 1)

22: end while

As the size of the permutation matrix (and hence the chunks) increases (N), the per-

mutation space associated with the set of the permutation matrices widens (N !), and this
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leads to a higher increase in the randomness of the data on applying permutations (log2N !).

Using a greater number of permutation matrices in our set also increases the entropy. The

time complexity of generating all permutation matrices of size N is O(N !). However, we are

generating a truncated set of permutation matrices, therefore the complexity is O(N). The

whitening algorithm involves iterative multiplication of the random chunk with a permuta-

tion matrix from the set (time complexity is O(N2)). Hence, the overall complexity of the

whitening algorithm is O(N2). The whitening algorithm is a quantum resistant algorithm

based on quantum permutation pad. It is robust against popular quantum and classical

attacks [10].

Using entropy expansion as a whitening technique has a few differences from the other

whitening algorithms described before - 1. Equivalent size: If the size of the entropy stream

is a multiple of the dimension of the permutation matrix, then the size of the output is

exactly the same as the size of the input; 2. Non-determinism: The output of the whitening

algorithm is different each time as the selection logic of the permutation matrices comes

from a QRNG that is truly random (as opposed to most whitening algorithms which are

deterministic in nature).

FIG. 1: Flowchart Explaining the Entropy Expansion Whitening Algorithm

International Journal on Cryptography and Information Security (IJCIS), Vol. 14, No.1, March 2024

7



IV. TESTING OF THE WHITENING ALGORITHM AND RESULTS

We tested the whitening algorithms on several random data generated by various random

number generators, and also compared the results of the whitening algorithm against com-

monly used cryptographic hash functions like SHA-256 as well as block ciphers like AES-256

and DES. The tests we conducted are now listed -

A. Pseudo-Random Number Generators (PRNGs)

1. C++ rand() Function

We generated 1GB of random numbers using the inbuilt ’rand()’ function in C++. The

seed taken for the generation of these numbers was decided by using ’time.h’ and the current

time in seconds was used as the seed. Earlier, the algorithm used by this function was a

simple multiply and shift algorithm, but now it has been replaced by a more cryptograph-

ically secure algorithm. The random numbers generated passed all the NIST tests (- note

that failures in the NIST reports are indicated by an asterisk next to the test parameters).

After modification by our whitening algorithm, it was found that the modified numbers still

passed all the NIST tests . The ENT test results are tabulated (Table I). It can be seen

that except the chi-square value, all parameters show an improvement.

2. Linux /dev/urandom

In Unix-like operating systems, /dev/urandom is a special file that can create pseudo-

random numbers using data from environmental noise as a seed. 1GB of random numbers

was generated using /dev/urandom and the testing was performed on both the original num-

bers and the modified numbers. We saw that 2 NIST tests failed for the original random

numbers (which was to be expected as /dev/urandom is known for not being cryptograph-

ically secure) , while all the tests passed for the modified numbers . The modification was

done using 32 matrices of 8192 × 8192 size. The ENT test results are tabulated (Table I).

Except the serial correlation coefficient, all parameters show an improvement.
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3. Linux /dev/random

Like /dev/urandom, /dev/random also creates pseudo-random numbers using data from

the environment as seed, but if there is less entropy, it blocks the random numbers. This

results in better quality random numbers and it was observed that all NIST tests passed

for /dev/random . After modification, this was still the case and all NIST tests passed for

the modified numbers . The ENT test results are tabulated (Table I). Here too, except the

serial correlation coefficient, all parameters show an improvement.

Parameter Input File 1

Output File

1 Input File 2

Output File

2 Input File 3

Output File

3 Ideal Value

Entropy 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000

Chi-Square

Distribution 256.99 271.33 281.74 254.60 298.63 239.96 256.00

Arithmetic

Mean 127.5024 127.5002 127.5035 127.4985 127.4964 127.5008 127.5

Monte

Carlo value

of Pi 3.141405155 3.141684931 3.141483117 3.141554084 3.141550664 3.141517494 3.141592653

Serial Cor-

relation

Coefficient -0.000024 0.000022 -0.000015 0.000019 -0.000022 0.000032 0.0

TABLE I: Results for C++ rand() (File 1), /dev/urandom (File 2) and /dev/random (File

3) 1GB random numbers
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Parameter

SHA-256

on C++

rand()

Modified

C++

rand()

SHA-256 on

/dev/urandom

Modified

/dev/urandom

SHA-256 on

/dev/random

Modified

/dev/randomIdeal Value

Entropy 7.999999 8.000000 7.999999 8.000000 7.999999 8.000000 8.000000

Chi-Square

Distribution 336.31 271.33 268.95 254.60 267.53 239.96 256.00

Arithmetic

Mean 127.4986 127.5002 127.4912 127.4985 127.5020 127.5008 127.5

Monte

Carlo value

of Pi 3.141316661 3.141684931 3.141813093 3.141554084 3.141714298 3.141517494 3.141592653

Serial Cor-

relation

Coefficient -0.000036 0.000022 0.000043 0.000019 0.000004 0.000032 0.0

TABLE II: Comparison of SHA-256 with Entropy Expansion for C++ rand(),

/dev/urandom and /dev/random 1GB random numbers

B. Comparison with Cryptographic Hash Function SHA-256

For the 1GB random numbers generated above (using C++ rand(), /dev/urandom and

/dev/random), we applied the SHA-256 hashing algorithm for every 160 bytes of these files

and compared the randomness of the results with the entropy expansion whitening algorithm

using the ENT test. Note that while using SHA-256 reduces the file size (in this case by a

factor of 5 as 160 bits are used at a time and the output of the SHA-256 algorithm is 32 bytes

or 256 bits long), entropy expansion does not reduce the file size. As entropy is determined

by statistical testing, this is favourable for entropy of the resulting data as can be seen in the

data compiled (Table II). For numbers generated by C++ rand(), all the parameters were

observed to be better for the entropy expanded data than for the SHA-256 hashed numbers.

Similarly, for numbers generated by /dev/urandom, entropy expansion showed better results

than SHA-256 for all parameters. For numbers generated by /dev/random, it was seen that

entropy expansion had better results for 3 parameters (entropy, arithmetic mean and Monte
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Parameter

DES-CBC

on C++

rand()

Modified

C++

rand()

DES-

CBC on

/dev/urandom

Modified

/dev/urandom

DES-

CBC on

/dev/random

Modified

/dev/randomIdeal Value

Entropy 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000

Chi-Square

Distribution 256.65 271.33 235.62 254.60 227.95 239.96 256.00

Arithmetic

Mean 127.5003 127.5002 127.5003 127.4985 127.5029 127.5008 127.5

Monte

Carlo value

of Pi 3.141422988 3.141684931 3.141670578 3.141554084 3.141474486 3.141517494 3.141592653

Serial Cor-

relation

Coefficient -0.000031 0.000022 0.000024 0.000019 0.000024 0.000032 0.0

TABLE III: Comparison of DES-CBC with Entropy Expansion for C++ rand(),

/dev/urandom and /dev/random 1GB random numbers

Carlo value of π) while SHA-256 had better results for chi-square distribution and the serial

correlation coefficient.

C. Comparison with Block Cipher DES-CBC

The random numbers generated by the three PRNGs were also encrypted using the block

cipher DES-CBC, which was the encryption standard until it was replaced by AES. Unlike

SHA-256, block ciphers like DES or AES-256 do not reduce the size of files. Randomness

comparison was done using both ENT and NIST. In the ENT tests, it was observed that

for C++ rand() data, entropy expansion showed better results than DES for all parame-

ters except the chi-square distribution (Table III). For /dev/urandom data, all parameters

except the arithmetic mean showed better results for entropy expansion (Table III). For

/dev/random data, all parameters showed better results for entropy expansion except the

serial correlation coefficient (Table III).
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Parameter

AES-256

on C++

rand()

Modified

C++

rand()

AES-256 on

/dev/urandom

Modified

/dev/urandom

AES-256 on

/dev/random

Modified

/dev/randomIdeal Value

Entropy 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000

Chi-Square

Distribution 234.06 271.33 247.86 254.60 295.12 239.96 256.00

Arithmetic

Mean 127.5005 127.5002 127.5041 127.4985 127.5037 127.5008 127.5

Monte

Carlo value

of Pi 3.141616169 3.141684931 3.141542811 3.141554084 3.141491916 3.141517494 3.141592653

Serial Cor-

relation

Coefficient 0.000000 0.000022 -0.000017 0.000019 0.000043 0.000032 0.0

TABLE IV: Comparison of AES-256-CTR with Entropy Expansion for C++ rand(),

/dev/urandom and /dev/random 1GB random numbers

For C++ rand() data and /dev/random data, it was seen that after encryption using DES-

CBC, the files passed all the NIST tests for C++ rand() and for /dev/random) which was

also the case when entropy expansion was applied (for C++ rand() and for /dev/random).

For /dev/urandom however, it was seen that even after encryption with DES-CBC, the

data failed for one NIST test , while when using entropy expansion it passed all the tests

.Note that entropy for all the files is the maximum possible so that cannot be a point of

comparison here.

D. Comparison with Block Cipher AES-256-CTR

Next, the random numbers generated by the three PRNGs were also encrypted using the

block cipher AES-256-CTR, which is one of the most commonly used encryption schemes.

Again, ENT and NIST tests both were performed. For C++ rand() data, entropy expansion
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Parameter

QRNG File

1

Output File

1

QRNG File

2

Output File

2

QRNG File

3

Output File

3 Ideal Value

Entropy 7.999990 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000

Chi-Square

Distribution 265.55 236.57 282.64 255.05 266.87 269.28 256.00

Arithmetic

Mean 127.4810 127.4994 127.5030 127.5014 127.4977 127.5003 127.5

Monte

Carlo value

of Pi 3.142213394 3.141519305 3.141527487 3.141333663 3.141651890 3.141697103 3.141592653

Serial Cor-

relation

Coefficient -0.000530 0.000017 0.000014 0.000012 -0.000031 0.000008 0.0

TABLE V: Results for Tropos QRNG File-1 (raw data file), File-2 (10% compression using

Toeplitz matrix based PA) and File-3 (20% compression). Note that all files contain

around 1GB of random numbers.

showed better results for chi-square distribution and arithmetic mean but AES-256-CTR

showed better results for Monte Carlo value of π and the serial correlation coefficient (Table

IV). For /dev/urandom data, it was seen that entropy expansion showed better results for

all parameters except the serial correlation coefficient (Table IV). For /dev/random data, it

was observed that entropy expansion showed better results than AES-256-CTR did for all

the parameters involved. Again, entropy for all the files is maximum here so it can’t be used

for comparison.

For the NIST tests, all the AES-256-CTR encrypted files passed all the NIST tests (for C++

rand(), for /dev/urandom and for /dev/random encrypted with AES-256). This is the same

as for the entropy expanded versions of these files (for C++ rand(), for /dev/urandom and

for /dev/random). The variation of the chi-square distribution and the arithmetic mean for

all of the above data was plotted (Fig. 2 and Fig. 3) and it was seen that the modified files

after entropy expansion (bold green colour) gave some of the best results with respect to

International Journal on Cryptography and Information Security (IJCIS), Vol. 14, No.1, March 2024

13



Parameter

ID

Quantique

Output File

1

Crypta

Labs

Output File

2

Classical

TRNG

Output File

3 Ideal Value

Entropy 7.999999 7.999999 7.999998 7.999998 8.000000 8.000000 8.000000

Chi-Square

Distribution 231.00 265.90 247.79 260.48 240.82 285.03 256.00

Arithmetic

Mean 127.4973 127.4978 127.5075 127.4961 127.5050 127.5010 127.5

Monte

Carlo value

of Pi 3.141995186 3.141344618 3.141686046 3.141344522 3.141373392 3.141479930 3.141592653

Serial Cor-

relation

Coefficient -0.000092 0.000036 -0.000092 0.000073 -0.000039 -0.000024 0.0

TABLE VI: Results for ID Quantique’s QRNG Data (125 MB) (File-1), Crypta Labs’

QRNG Data (100 MB) (File-2) and Classical TRNG Data (1.3 GB) (File-3)

the ideal values of these quantities.

E. Classical TRNG Data

Lastly, we tested the effect of entropy expansion on some data (around 1.3 GB) generated

by a non-quantum classical TRNG. The file was modified and the ENT test was performed.

It was observed that except the chi-square distribution, all the randomness parameters were

showing improvement (Table VI).

F. Quantum Random Number Generators (QRNGs - Tropos, ID Quantique and

Crypta Labs)

The whitening effect of the entropy expansion algorithm on quantum random number

generators is observed. For this, we took three files with data (around 1GB each) generated

using a QRNG and with their privacy amplified to different degrees were also taken and the
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FIG. 2: Variation of Chi-Square Distribution of the Original Data and after Various

Modifications

FIG. 3: Variation of Arithmetic Mean of the Original Data and after Various Modifications

ENT and NIST tests were performed on them. All the files were modified using entropy

expansion using 32 matrices of size 8192× 8192.

For file 1, it was observed that all the ENT parameters improved (Table V). The original
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file failed two NIST tests while the modified file passed all of the NIST tests .

For file 2, all the ENT parameters with the exception of the Monte Carlo value of π showed

an improvement after entropy expansion (Table V). In this case, it was seen that the original

file performed poorly on the NIST test and showed a very low P-value for more than 40 tests.

After entropy expansion, the randomness showed significant improvement and the modified

file only failed 1 NIST test .

For file 3, after entropy expansion the arithmetic mean and serial correlation coefficient

improved while the chi-square distribution and Monte Carlo value of π were better for the

original file (Table V). In the NIST tests, the original data failed 2 tests , but after applica-

tion of entropy expansion it was observed that the modified data passed all the NIST tests .

Next, we took 125 MB of data from ID Quantique’s QRNG resource library [15] and per-

formed the ENT test on the file and its modified version using entropy expansion. It was

seen that all parameters showed an improvement after entropy expansion (Table VI).

100 MB of data was also taken from Crypta Labs [15] and similarly modified using entropy

expansion. The ENT test was performed and it was observed that all parameters except the

Monte Carlo value of π showed an improvement (Table VI).

V. CONCLUSIONS

Random numbers are essential for scientific investigations and technological applications.

High entropic random numbers are critical for cryptography. Deterministic PRNGs and

low entropic TRNGs create a situation of entropy starvation, thus exposing data for cyber

attacks. Recently, QRNGs have gained much attention because of their potential to harness

ontic randomness from simple quantum phenomenon. However, manufacturing bias and

technological imperfections give rise to imperfect randomness even in QRNGs. Hence, there

is a requirement of post-processing to remove these biases. The existing methods on one

hand require compression, thus decreasing the data rate and on other hand do not improve

all the randomness parameters.

In this work, we have addressed the problem of universal whitening algorithm for the

commercial random number generators by using n-qubit permutation matrices. We have

demonstrated the efficacy of our algorithm in several scenarios: PRNGs, classical TRNG as

well as commerial QRNGs and also comparead it with popular cryptographic algorithms.
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We have achieved significant improvement in the Chi-Square distribution value in majority

(more than 70%) of the instances. Note that other parameters also improve almost in every

instance. The modified random data files after the application of our algorithm passes the

NIST SP 800-22 tests in both the cases: 1. The raw file does not pass all the tests. 2.

The raw file also passes all the tests. Our algorithm performs well in every scenario, thus

has the potential to be a universal whitening algorithm for the commercial random number

generators.

There are several offshoots of the present work. We have demonstrated whitening mainly

for 1 GB file size using 13-qubit permutation matrices (32 such matrices). One can determine

the optimum matrix size and number of matrices for a given file size. The true potential of

the algorithm will be shown with FPGA implementation and modification of the generated

imperfect data at the runtime with the speed in Gbps. To ensure indeterminacy, one can

use the raw data for the creation and selection of the permutation matrices.
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