
International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

DOI:10.5121/ijcis.2014.4201 1

A CRITICAL REASSESSMENT OF
EVOLUTIONARY ALGORITHMS ON THE

CRYPTANALYSIS OF THE SIMPLIFIED DATA
ENCRYPTION STANDARD ALGORITHM

Fabien Teytau and Cyril Fonlupt

University Lille Nord de France, Calais, France

ABSTRACT

In this paper we analyze the cryptanalysis of the simplified data encryption standard algorithm using meta-
heuristics and in particular genetic algorithms. The classic fitness function when using such an algorithm
is to compare n-gram statistics of a the decrypted message with those of the target message. We show that
using such a function is irrelevant in case of Genetic Algorithm, simply because there is no correlation
between the distance to the real key (the optimum) and the value of the fitness, in other words, there is no
hidden gradient. In order to emphasize this assumption we experimentally show that a genetic algorithm
perform worse than a random search on the cryptanalysis of the simplified data encryption standard
algorithm.

KEYWORDS

Simplified Data Encryption Standard, Meta-Heuristics, Genetic Algorithm

1. INTRODUCTION

Meta-heuristics are powerful tools for solving optimization problems. They have been applied
to many combinatorial problems, and they are able to tackle problems for which the search
space is too large for an exhaustive search. Cryptanalysis is the process of recovering a plain-text
from a cipher. In order to deter attacks, the process relies on a large search space. For this reason,
many meta-heuristics, and in particular Genetic Algorithm (GA) [1] [2], Memetic algorithm
(MA), Simulated Annealing (SA) or Tabu search (TS) have been tried for cryptanalysis.

The Simplified Data Encryption Standard (SDES) is a simplified version of the well known Data
Encryption Standard (DES) algorithm. The SDES has been designed for academic purposes and
is used as a benchmark for cryptanalysis [3].

It is well known that cryptanalysis of the SDES scheme is an NP-hard problem and that meta-
heuristics are well designed to solve combinatorial and difficult problems. By exploring a large
set of solutions that improve over time, evolutionary algorithms have been successful for solving
difficult and challenging problems. Even if the SDES is an academic and fairly easy problem that

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

2

can be solved with an exhaustive search (as the key length is only 10 bits, there are no more than
2^10 = 1024 keys to try) it is used as a starting example for meta-heuristics and evolutionary
cryptanalysis.

Currently, researchers in the cryptanalysis field look for regularities in the plain-text (if
available), in the encrypted text, try to exploit vulnerabilities in the encryption process and
stochastic search-based methods were not regarded as possible alternatives for cryptanalysis.

However as the brute force algorithms are inadequate for cryptanalysis for standard encryption
schemes (DES requires a 56-bit length key for instance), meta-heuristics and evolutionary
methods have drown a fair amount of attention from the cryptanalysis field.

As early as 1993, Spillman [4] was the first to introduce an evolutionary approach based on
genetic algorithm for cryptanalysis to discover a simple substitution cipher. Mathhews [5] used
genetic algorithms for transposition ciphers. In this work, GAs were used to seek the accurate
permutation. In the same way, Jacobsen [6] proposed a hill-climbing approach to attack simple
and polyalphabetical substitution ciphers.

More recently, several interesting studies were carried out for cryptanalysis of SDES via meta-
heuristics and evolutionary approaches. Rao et al [7] were the first ones to study how several
optimization heuristics (tabu search algorithms, simulated annealing and genetic algorithm) could
match 9 to 10 bits of the target in about 15 to 20 minutes. No algorithms performed better than
the others. This work was enhanced by Garg in several papers [8] [9] [10] [11] where she studied
how to use memetic and genetic algorithms to break the SDES key. Other works regarding
cryptography using evolutionary tools can be found in [12][13][14].

All the work described in the previous section provides a test-bed for evaluating the performance
of memetic and evolutionary approaches and furthermore showed that unlike classic methods for
breaking encryption schemes that require mathematical knowledge, these new approaches were
attractive as they need little cryptological knowledge. However, we strongly believe that these
approaches are biased and that on average they perform no better than random search and that the
use of evolutionary schemes to break state-of-the-art encryption process require a better insight
understanding of the encryption process.

The paper is organized as follows: Section 2 presents the SDES algorithm. Section 3 presents
the random search while section 4 briefly describes the genetic algorithms. Experiments and
discussions about the possible flaws of previous papers are explained in Section 5. Section 6
draws some conclusions and presents some hints to efficiently use memetic and evolutionary
algorithms in cryptanalysis.

2.THE SIMPLIFIED DATA ENCRYPTION STANDARD

The SDES algorithm [3] is a simple encryption algorithm, it was devised for pedagogical
purposes. It is a symmetric-key algorithm which means that the sender and the recipient share
the same key.

It uses a 10-bit key and takes an 8-bit block of plain-text to produce an 8-bit block of cipher

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

3

text. The decryption process works similarly, except the cipher is the input and the produced
plain-text is the output.

The algorithm consists in five steps: an initial permutation (IP), a complex function fk, another
permutation function (SW), another application of the fk function and eventually a final
permutation (IP-1). This final permutation is the inverse of the initial permutation. These
different steps are now detailed.

2.1 Key Generation

SDES is based on the use of a 10-bit key. From this key, two 8 bit sub-keys are produced
respectively called K1 and K2. These two sub-keys are produced through different and easy
binary operations: circular left shift and permutations.

2.2 Initial And Final Permutations

As previously said, the algorithm takes as input an 8-bit block. The first operation is an initial
permutation called IP. The initial permutation is (1,5,2,0,3,7,4,6) which means that the 5th bit
will be the 2nd bit after this initial permutation.

For instance, if we define the 8-bit block as (m0, m1, m2, m3, m4, m5, m6, m7). Then, IP(m0,
m1,m2, m3, m4, m5, m6, m7) = (m1,m5,m2,m0,m3,m7,m4,m6).

2.3 The Fk Function

The fk function can be seen as the heart of the simplified data encryption standard SDES scheme,
it is a complex function that involves a combination of permutation and non linear functions
called Sboxes
.
The fk function can be summed up as:
f k (L, R)=(L⊕F(R, SK), R)

Where F is a mapping from a 4-bit strings to a 4-bit strings, L is the leftmost 4 bits, R the
rightmost 4 bits and SK the subkey. The mapping F is the trickiest part of the scheme as it
involves non linear functions.

The first step is known as an expansion/permutation operation. It basically consists in mapping
from a 4-bit string to an 8-bit strings.

For instance if the 4-bit input is (m0, m1, m2, m3, m4), the expansion/permutation operation
consists in: (m4, m1, m2, m3, m2, m3, m4, m1).

An exclusive or (xor) is performed on the output of the expansion/permutation operation with the
first sub-key K1:(m4Å k1,1, m1Åk1,2 , m2Åk1,3 , m3Åk1,4 , m2Åk1,5 , m3Åk1,6 , m4Åk1,7 ,
m1Åk1,8) where k1,I indicates the ith bit of the sub-key.

This output is usually depicted for clarity reasons in a matrix form:

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

4

At this step, the first row of this matrix M is used as input to the S0 box to produce a 2-bit output
while the second row is used to produce another 2-bit output from the S1 box.

The process is quite easy. The 1st and 4th bits are turned into an integer to specify the row of
the S0 while the 2nd and 3rd bits are used to specify the column. For instance, if the first row of
M is (1,0,1,0), the output of the S0 box will be 2 (row 2 (10), column 1 (01)). This value is
eventually turned into a binary number and delivers 2 bits. Additionally, the last row of M is
used in the same way that S0 as an input for S1 to produce two more bits that are merged (the
two bits of S0 on the left, two bits of S1 on the right).

These 4 bits undergo a last permutation called P4 (m2, m4, m3, m1) to provide the output the F
function.

A final xor operation is performed on the output of the F function with the 4 leftmost bits of the
input, the 4 rightmost bits being untouched.

As it can be seen, the output of the fk function only alters the leftmost 4 bits of the input. The
purpose of the Switch function is to invert the input to iterate the fk function with the rightmost
4 bits.

2.4 The Switch Function

The switch function is a relatively simple function. It simply permutes the first four bits with the
last four bits: SW(m0, m1, m2, m3, m4, m5, m6, m7) = (m4,m5,m6,m7,m0,m1,m2,m3).

After this step, another iteration of the fk function is performed allowing to encrypt the 4
rightmost bits. However during this step, a slight modification is realized. Instead of xoring the
output of the expansion/permutation operation with the sub-key K1, the sub-key K2 is used
instead.

A summary of the SDES algorithm is presented in Figure 1.

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

5

Figure 1. The SDES algorithm1.

3. RANDOM SEARCH

Random Search (RS) belongs to the family of numerical optimization. It does not require the
gradient of the function to be optimized and hence, can be performed on functions which are not
continuous or differentiable. Such optimization can be applied to black-box optimization. The
principle of this method is relatively simple : at each iteration a random solution from the search
space is generated. If this solution is better than the current best solution, this solution replaces
the current best solution. At the end, the best solution found by the algorithm is returned.

Needless to say, this method is a basic method which is studied here only to enhance the
problematic of this paper. This method can be seen as a lower bound of the quality of a search
algorithm.

4. GENETIC ALGORITHMS

Evolutionary algorithms belong to the family of stochastic optimization algorithms. These
methods are bio-inspired techniques that crudely mimic reproduction, mutations, crossovers and
selection. They are modeled according to Darwin's evolution theory. In these algorithms,
individuals represent candidate solutions of the optimization problem. These algorithms do not
require the gradient of the problem to be optimized. Genetic Algorithms (GA) [1] [2] belong to
the family of evolutionary algorithms. They are mainly used with a discrete search space,
meaning that they are used for combinatorial optimization problems. A population of candidate
solutions evolves, and generations after generations, individuals are biased towards the best ones

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

6

(according to the fitness function). Crossovers and mutations are random operators used for
exploring the search space. Algorithm 1 illustrates this method. This algorithm is used in Section
5 as it is praised in [9] as a good scheme to hack the key of SDES.

5. EXPERIMENTS

5.1 Checking The Encryption Process Performance

Using bio-inspired algorithms for the cryptanalysis of the simplified DES is based on a very
strong assumption: a fitness function can guide the search towards the perfect encryption key.

The technique that is currently used for any language (in this paper, English is used without loss
of generality) is to compare n-gram statistics of the decrypted message with those of the target
message.

To evaluate the suitability of a proposed key K, the encrypted text is decrypted using this test key
K, and the statistics of the decrypted text are compared to the statistics of the target language.
Usually, only unigrams and bigrams are used since trigrams require more computing power and
time. This additional cost is too important in comparison with its corresponding
information.

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

7

This fitness function is defined as follows:

with a and b being the weights given to unigram and digram,

where Ei is the percentage of the ith letter in the English language and E(i,j) is the frequency of a
letter i followed by a letter j in English (for instance the frequency of “th” is 1.52 while the
frequency of “ld” is 0.02). Di is the frequency of a letter i in the decrypted text and D(i,j) is the
frequency of the digram ij in the decrypted message
.
This fitness function is 0 if the correct key K is used in the decryption process and the greater the
value of Fk, the worst the solution.

It is quite obvious that this fitness function can be used in a minimization process and when this
function tends towards 0 we can assume that the text is close to the plain-text. It is a good practice
to evaluate this fitness functions over several texts and the longer the text is, the more accurate
the statistics of unigram and digram are. In the case of genetic or memetic algorithms, this fitness
function is used to evaluate candidate key and to guide the evolutionary process towards the good
solutions (keys).

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

8

For methods like genetic algorithms, memetic algorithms or hill-climbing strategies, a strong
assumption is made: there exists an implicit gradient to better solutions to the best solution. In
other words this means that the more bits a solution shares with the real key (i.e. the target key),
the greater the fitness value, thus guiding the research to share more bits with the real key. In [9]
[13], Garg shows that using memetic algorithm, several bits of the key are correctly recovered
after several minutes for cipher text ranging from 100 to 1000 characters. However, we think
that there is some serious flaw in the reasoning: the fact that this fitness function is fruitful to
the search landscape.

In order to show that using the fitness function Fk to guide the evolutionary process is more or
less like trying to find a needle in a haystack, we devise the following experiment: starting with
a given key of 10 bits, we perturb one of the 10 bits of this original key to get a new key and we
evaluate Fk over this new key. This experiment is iterated 9 times, one for each possible key
with a distance 1 from the original key, then we go on with all the possible keys with a distance
of 2 from the original key and so on until we evaluate the fitness function for all possible keys
with a distance of 9 (note that for all cases, the number of possible keys with a distance n is
equal to the number of keys with a distance 10-n).

Figures 2 and 3 represent the fitness values of the perturbation of 8 random keys (4 per figure).
Due to the lack of space, only 8 different keys are displayed but are fully representative of the
1024 different keys. From these figures the first point to note is that there is absolutely no
correlation between any two perturbed keys whatever its distance from the original key is!
Furthermore, it seems that solutions at one bit distance from the target key are attributed a
misleading fitness value [15]

When comparing these figures with results from [9][10][13], we can understand why the memetic
approach seems to remain stuck to no more than 9 bits matched (out of 10), the solutions at a
distance of one bit of the local optimum act as a deterrent and hopping from these solutions to
converge to the global optimum is rather intractable.

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

9

5.2 Comparison Between A Random Search And A Genetic Algorithm.

In the previous section, the fitness landscape of the SDES is examined and we show that is is
quite deceptive. In this section, we study the number of bits matching with the target key for two
methods: a GA-based approach and the classic random search scheme. To assess our approach
and to show that using a GA with the fitness function presented is Section 5.1 and used in [11] for
cryptanalysis is not an efficient tool for cryptanalysis, we carry out the
following experiments.

As in [9], a simple GA is programmed whose fitness function is equation 1 and is compared to a
random search method. The purpose of these experiments is to show whether or not a GA
performs better or not than a random search for the cryptanalysis of SDES.

The GA is tuned as in [9], the population size was set to 10, the probability for crossover is set to
0,95 while the probability for mutation is 0.05. 10 generations are performed, so that the total
number of evaluations is the same than the experiment using random search. Table 2 sums up the
results for the GA approach for texts of various lengths (from 100 to +100k characters) while
table 1 shows the results for the RS scheme. There is no specific parameters for the RS scheme: a
solution is simply randomly generated. For each text size, 100 runs of the GA and RS are
performed, the standard deviation and the average fitness of the number of matched bits are
computed. The best of the 100 runs is recorded.

According to these results it is quite obvious that the GA does not outperform the RS. Moreover
is seems that the GA heuristic seems to add some kind of deleterious mechanism to the search.

From all these results it seems clear that we can conclude that using a GA with this fitness
function is irrelevant and that a basic random search, usually considered as a lower bound, is
more efficient.

We can also say that this kind of problems is not suited to meta-heuristics like GA as the SDES
like all cryptographic schemes is essentially devised as a misleading problem with no gradient.
If some kind of gradient was available to the problem, SDES, like DES, would be much more
easily hackable.

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

10

To conclude, using an evolutionary approach for the cryptanalysis of SDES is not an adequate
response. Moreover, it seems that it in some cases it performs worse than the random search.

6. CONCLUSIONS

In this paper we emphasize the importance of having a relevant fitness function when meta-
heuristic methods, and in particular when genetic algorithms are used to the cryptanalysis of the
SDES . We first study the landscape of the fitness function in order to show that there is no
correlation between the fitness function and the distance to the correct key. This is an important
fact because this means that having a good score (according to the fitness) does not mean that we
are close to the optimum. Then we compare the efficiency of the genetic algorithm with a random
search. From these experiments, we can conclude that the genetic algorithm does not converge
correctly to the optimum. The SDES algorithm uses a 10-bit key, meaning the search space
equals to 1024. This allows us to perform a random search. In fact the results is quite interesting:

International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014

11

in average the random search is better than the genetic algorithm. The number of correct bits for
all text sizes is 6.37 for the random search against 5.67 for the genetic algorithm. Moreover 8
times (over 10) the optimum (i.e. the correct key) is found with the random search against 4 times
over 10 for the genetic algorithm. The main explication comes from the bad fitness function used.
Figures 2 and 3 show in particular that being at a distance of 1 to the correct key corresponds
generally to a fitness trap. There is no doubt that the genetic algorithm converges to a local
optimum.

We strongly believe that using evolutionary computing techniques might be of help for
cryptanalysis but it should be used not as a silver bullet to magically retrieve the key but more
as the tool for cryptanalysis. The most complex part of SDES consists of a combination of the
non-linear functions (called Sbox); these Sboxes might be built using evolutionary computation
approaches and may also be hacked with this approach.

REFERENCES

[1] John Holland, Adaptation in natural and artificial systems: An introductory analysis with applications
to biology, control, and artificial intelligence, 1975

[2] David Goldberg, John Holland, , Genetic algorithms and machine learning, 1988
[3] Edward F.Schaefer, A simplified Data Encryption Standard Algorithm, 1996
[4] Richard Spillman, Cryptanalysis of Knapsack Cipher using Genetic Algorithms, 1993
[5] Robert Mathews, The Use of Genetic Algorithms in Cryptanalysis, 1993
[6] Thomas Jakobsen, A Fast Method for Cryptanalysis of Substituion Ciphers,
[7] N. Nalini, G. Raghavendra Rao, Cryptanalysis of Simplified Data Encryption Standard via

Optimisation Heuristics, 2006
[8] Poonam Garg, Genetic Algorithm Attack on SImplified Data Encryption Standard Algorithm, 2006
[9] Poonam Garg, A Comparison between Memetic algorithm and Genetic Algorithm for the

cryptanalysis of Simplified Data Encryption Standard algorithm, 2009
[10] Poonam Garg, Cryptanalysis of SDES via Evolutionary Computation Techniques, 2009
[11] Poonam Garg, Evolutionary Computation Algorithms for Cryptanalysis: A Study, 2010
[12] Mishra, Swati,Siddharth Bali, Public key cryptography using genetic algorithm.,2013
[13] Sharma, Lavkush, Bhupendra Kumar Pathak,R. G. Sharma, Breaking of Simplified Data Encryption

Standard Using Genetic Algorithm., 2012
[14] Ratan Ram, Applications of Genetic Algorithms in Cryptology., 2014
[15] David Goldberg, Bradley Korb, Kalyanmoy Deb, Messy genetic algorithms: motivation, analysis, and

first results, 1989

