International Journal on Computational Science & Applications (IJCSA) Vol.8, No.1, February 2018

NONSTATIONARY RELAXED MULTISPLITTING
METHODS FOR SOLVING LINEAR
COMPLEMENTARITY PROBLEMS WITH
H—MATRICES

Cuiyu Liu and Chenliang Li

School of Mathematics and Computing Science, Guangxi Colleges and Universities Key
Laboratory of Data Analysis and Computation, Guilin University of Electronic
Technology, Guilin, Guangxi, China,541004.

ABSTRACT

In this paper we consider some non stationary relaxed synchronous and asynchronous
multisplitting methods for solving the linear complementarity problems with their coefficient
matrices being H—matrices. The convergence theorems of the methods are given,and the efficiency
is shown by numerical tests.
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1. INTRODUCTION

Many science and engineering problems are usually induced as linear complementarity
problems(LCP): finding an xe& R" such that

x20,Ax— £ 20,x (Ax— f)=0,(1.1)

where A€ R™ is a given matrix, and f € R" is a vector. It is necessary to establish an efficient

algorithm for solving the complementarity problem(CP). There have been lots of works on the
solution of the linear complementarity problem([9,10,14,15,13,18]), which presented feasible and
essential techniques for LCP.

The multisplitting method was introduced by O’Leary and White [17] and further studied by many

people [11,12,1,2,3.4,5,6]. In the standard multisplitting method each local approximation solution

x**! is updated once using the same vector x*. At the k th iteration of a nonstationary multi

splitting method, each processor i solves the problem ¢(k,i) times, in each time using the new

obtained vector to update the x*. [16] presented the following non-stationary multi splitting
algorithm for linear systems:
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Algorithm 1.(Nonstationarymultisplitting). Given the initial vector x°,

For k=0,1,... until convergence

In processor i, i=1 to m

0 k
yi =X,

For [ =1 to g(k,i)

Fy; =Gy +b

m
k+1 _ q(k,i)
X = E E y"".
i=l

In [16], relaxed nonstationarymultisplitting methods are also studied. The computational results
show that these method are better than the standard multisplitting methods. [8] presented a
nonstationary two-stage multisplitting methods with overlapping blocks. [7] proved the
convergence of the nonstationarymultisplitting method for solving a system of linear equations
when the coefficient matrix is symmetric positive definite.

The purpose of this paper is also on establishing efficient parallel iterative methods for solving the
LCP. By skillfully using the matrix multisplitting methodology and the block property, we propose
a class of nonstationarymultisplitting methods, for solving the linear complementarity problems
(1.1).

The paper is organized as follows. In Section 2 we propose synchronous
nonstationarymultisplitting method for solving LCP and establish its convergence theorem. In
Section 3 we give an asynchronous nonstationary parallel multisplitting method for solving LCP
and analysis the convergence of the algorithm. In Section 4, some numerical results show the
efficiency of our algorithms.

2. SYNCHRONOUS RELAXED NONSTATIONARY MULTISPLITTING
METHOD

Machida([13]) extended the multisplitting methods to the symmetric LCP. And Bai ([1,2,3,4])
developed a class of synchronous relaxed multisplitting methods for LCP, in which the system
matrix is an H -matrix. In this section, by using multisplitting and block property techniques, we
present a nonstationarymultisplitting method for the LCP(1.1), in which A isan H — matrix.

At first we briefly describe the notations. In R" and R™" the relation > denotes the natural

components partial ordering.In addition, for x, ye R" we write x > yif x; > yi,i =L2,..,n.
A nonsingular matrix A =(a;)€ R™" is termed M — matrix,if a; <0 for i# jand A'>0.
Its comparison matrix < A >= (¢, ) is defined by &, =|a; |, a; =—|a;|(i# j). Ais said to

be an H —matrix if < A> isan M — matrix. Aissaidtobe an H, —matrix if A isan H —
matrix with positive diagonal elements.

Definition 2.1. A splitting A=M — N is termed M — splitting of matrix A if M isan M —
matrix and N =0.
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Remark 2.1. Let’s separate the index set S:={1,2,..,n} into m nonempty subsets
S,(i=1,2,..,m) suchthat U S, =S.We define that

>0, =qgeSs,,
B, ()= {ﬁl,, p=qes,

)= )
p 0, otherwise,

where Y E, =1,and E, >0.
i=1

According to the block property, some variables corresponding to the zero entries of E|,; need not

be calculated.
In this section, we’ll discuss a synchronous nonstationarymultisplitting method.

Algorithm 2. (Synchronous relaxed nonstationarymultisplitting method)

1) Give an initial value x°, andlet k=0.

2)Foreach i(i=12,...m),

yO,i =.Xk
For j=1to s(k,i),
yj’i >0,
M,y"" > F’, 2.1

e
where F’'=f+ N,y ™.
3)

M=y Ey i+ (1-m)xt,(2.2)

i=1

where ZE,.zl, E >0.

i=1

4) k:=k+1, return to step 2) .
Lemma 2.1. ([11]) Let A,Be R™ satisfy that <A> < <B>. If A is an H -matrix, then B is
also an H -matrix.

Following from Lemma 2.1, we can get the following lemma.

Lemma 2.2.If (A)<(M)—|N|,and A isan H -matrix, then M isan H -matrix.

Lemma 2.3. [11] Let A=(a;)e R"™" . If there exists a ue R", u>0, such that |A|u<u,
then there exists a number @€ [0,1), such that p(A)< 8.

Lemma 2.4.If (A)<(M)—|N|,and A isan H -matrix, then p((M)"'|N|)<1.

Proof: By Lemma 2.2, (M) is an M — matrix. Therefore, there exists a positive vector

3
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u=(A'e, e=(1,1,..,1)" € R", such that
(MY " INlus(I-(MY" {Au=u—(M)"e<u.

By Lemma 2.3, p((M)™'|N|)<1.
The next lemma is obvious.

Lemma 2.5. Let A€ R™ bean H, -matrix, and xe R".If x; 20, then
(A x]; < (Ax),.

Lemma 2.6. Let A be an H, matrix, A<SM,—N, (i=12,.,m ) satisfy that

(A)<(M,)—|N,| for each i, and x" be the solution of problem(1.1). If y' &0 is generated
by Algorithm 2, then
| S MY N,y B M N D

Proof: By Lemma 2.1 and Lemma 2.2, (M) is an M — matrix. Consider the following cases:

(1) y“M >y =0.
By (1.1) and (2.1), we have
(Mix* -Nx —f) 20,(2.3)
J

and

(Miys(k,i),i _Niys(k,i)*li — f)] =0.(2.4)

Substracting (2.4) from (2.3), we have
(M, (y* =x)) (N =) <(IN [y 0 =x])
J J J
Otherwise, by Lemma 2.5,
(Mi(ys(k.i).i _x*))j > (<M1> | ys(k,i).i _x* |)J
Therefore,

(M1 y e =) <INy 0 =x') 25)

@) x; >y =0.
Similar to case (1), (2.5) holds true,
3) x;>0, yi“™>0.
By (1.1) and (2.1), we have
(Mx =Nx - f)j =0,(2.6)
and
(M y* =Ny 0t — f)j =0.(2.7)
Substracting (2.7) from (2.6), we have
(M, =x) =N, =xh) <(IN Iy =)

and
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(M, =2h)) 2 (M) |y =)
J J
Therefore, (2.5) holds,
4 If y;(k‘i)‘i = x;, then [x* - y“(k’i)’i] '=0. From this we can deduce that the left side of (2.5) is
J

non-positive, but the right side of (2.5) is non-negative. So (2.5) is true.
In a word,

* s(k,i),i s(k,i)-1,i #
(M) x =y " ISIN Ly =X,
or,
|x* _ yx(k,i),i |< <M >—1 |N || yx(k,i)—l,i _x‘< |
< ; ; .
Moreover, by induction,
s(k,i)i I<K(M -1 N s(k,i)-1,i I<KUM -1 N s(kyi) | _k *
|y - X |—< i> | ,”y - X |—(< i> | ,l) |)C - X

Lemma 2.7. ([11]) Let Ae R™ be nonsingular with A™ >0.Let A=M -N=P-Q
be two regular splittings of A and

P'>M".
Then

p(P'Q) < p(M™'N).

Lemma 28. Let A=M-N and A=D-B be M — splittings of A, and
D =diag{a,,,a,,,"--,a,}.1f M <D, then PM'N)< p(D'B)<1.

nn

Theorem 2.1.Let y=p(D"'B), we (0,2/(1+7)). Andlet A be an H, -matrix, and for
each i=12,..,m , A=M,-N, satisty that (A)<(M,)—|N,| . Suppose that

’7=7/<§HE1'

),and § satisfies that

[y 1N, e <7, stk 2 5.i=1200m.28)

If for each k=12,..., i=12,...,m, s(k,i)>35, then the sequence {x"} generated by the
Algorithm 2 converges to the solution x* of the problem (1.1).

Proof: Since A is an H, -matrix, and for each i=12,...,m, (A)<{(M,)—|N,| . By

Lemma 2.4, p((M )" |N,|)<1.Let T, =Y E,(M,)"|N,)**". By Lemma 2.6, we have

i=1

m
|xk+l_x* |S Q)ZEI | ys(k,t),z_x* |+|1_w”xk_x*|

i=1
<(al +|1-o|I)| x* —x"|
< (@l +|1-o| )@l +|1-a|D)-- (ol +|1-o| )] x" = x"|.

By (2.8), we have
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7)< &y v e
i=1

<y
Therefore,
(wTk+|1—a)|I)|xk—x* |S(a)7+|1—w|)|xk—x*|,
Moreover,
| X = X" K (@, +|1-o| (T, +|1-@|I)-(aT,+|1-o| )| x* —x"

<(wy+|1-w)* | x"—x"].
As 0<w<2/(1+7%), then wy+|1-wl|<1. Therefore, when k =0, | X" —x"|=0.

Suppose that A is an M — matrix, it is an H, —matrix, too. Therefore , we have the
following corollary.

Corollary 2.1.Let 8= p(D'B), we (0,2/(1+6)). Andlet A be an M -matrix, and for
each i=12,...m, A=M,—N, is an M -splitting. Suppose that 7 = 0/(Z||Ei||) ,and §
i=1

satisfies that
[Ny <, sthi)25i=12,.m. 29

If for each k=12,..., i=12,...,m, s(k,i)>5, then the sequence {xk} generated by the

Algorithm 2 converges to the solution x* of the problem (1.1).

3.ASYNCHRONOUS RELAXED NONSTATIONARY
MULTISPLITTING METHOD

Bai([5,6]) proposed a class of standard asynchronous parallel multisplitting relaxation methods for
LCP. Frommer ([12]) proposed an asynchronous weighted additive Schwarz scheme for solving
the system of linear equations with multi-splitting method and Schwarz method. Mas [16]
presented a relaxed nonstationarymultisplitting method for linear systems. Numerical experiments
demonstrate the asynchronous method is faster than the corresponding synchronous one. The
purpose of this section aims at extending this asynchronous nonstationary version to solving the
LCP.

Let N,={0,1,2,..}. And for arbitrary ke N,, let J(k) c{1,2,---,m} be a nonempty set.
Denote J={J(k)}keN0 , S=(sl(k),s2(k),--- s (k))keN as unbounded sequences, and have

following properties:
(1) Forany i€ {L,2,---,m}, ke N,, si(k) <k.

(2) Forany ie{1,2,---,m}, [im s[(k):+oo,

k—+o0
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(3) Forany ie({l,2,---,m},set {ke N,|ie J(k)} is unbounded.

Let s(k)=ml'n s, (k),i=1,2,...,m. It follows that s(k) <k by property (1). It’s obvious

that [7m s (k) =+oo by property (2).

k—>+o0

Let {m,}

following procedure:

N, is a positive integer sequence which is strictly monotone increased.It is produced by

m, is the least positive integer such that

U J(k)={L2,.m},

0<s(k)<k<m,

Similarly, m

.. 1s the least positive integer such that

O J(k)={1,2,---,m}.

m, <s(k)<k<m,,

It’s easily known that the sequence {m,} exists by the properties of the sets Jand .

Algorithm 3. (Asynchronous relaxed nonstationarymultisplitting method)
1) Given an initial value X° =[x0’1,x0’2,...,x0”"]. eR™, xX"=x"eR", i=1,2,...m.
k:=0.

2) In processor i,
5 (k)i

i

i,0
yU=x

For v=1to ¢g(i,k), y" is the solution of the following LCP:

yi,v 2 O,
M y" >F"™, 3.1

T o,
where F™ = f+N,y"™".
Let
M, le J(k),

@) By (-0, e (k)

i
i=1

k+1,1
X =

where Y EY =1, EY) >0, and J(k) < {L,2,....,m}.
i=1

3) k:=k+1, return to step 2).

The following lemma is obvious.

Lemma 3.1.Let X*z(x*,x*,...,x*] , sz[xk’l,xk’z,...,xk”") Jif
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[x",x°x',...X"|cR™ Vke N,,
. .. T
and there exists a constant d >0 and a positive vector U z(u,u,...,u) € R™, such that

| X?—X"|<OU foreach ge{0,1,2,...,k}, then there holds

lv—X"|<oU,
where
xsl(k),l
xsz(k),Z
V= .
xsm(k),m

andsl(k)Sk forall [e€{l,2,...,m}.

Theorem 3.1.Let 8< p(D'B), we (0,2/(1+6)).Andlet A bean H . -matrix, and for each
i=12,...m, A=M,— N, satisfy that (A) <(M,)—|N,|. Suppose that 7=6/ (Z”EI.”) ,
i=1

and ¢ satisfies that

H(<M1.>-1 IN, |)q<"-">H <n, qlk)2§,i=12,...m (3.2)
If for each k=12,..., i=12,...m, q(i,k)=¢q , then the sequence {xk’i} generated by
Algorithm 3 converges to the solution x* of the problem (1.1).

Proof:Let w=(A)'e,e=(L1,..,1) € R". Then, w>0, and there exists a constant
7€ [0,1), such that
<M/>_1 |N1 |w= (I_<M/>_1<A>)W = W_<M[>_le < yw.

Let w'= min (w;}- Then, w" >0. Define 52%5‘0", we get
1<j<n
| x" = x° < Sw.
Therefore, we have
(M))™"|N, || x"—x°|< Syw, 3.3)
and
| X°— X" < oW,
where W =(w,w,..,w) .
Now we will prove that
| X*'—X"|<6W, ke N, (34
Let’s assume that
| X=X "|<OW, ge{0.1,...k}.

If [¢ J(k),then x**"' =x"' and
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k+1,1

| XM= x5 XM =X < Ow.

If le J(k), then x*" =>" EW M0 Therefore,

i=1

|xk+1,l - =] wz Ei(,/;)yi’q(i’k) +(1- w)xk,l — |

i=1
<Y EY [y —x" [+ [1- o] X —x7].(.5)

By Lemma 2.6,
|y xS (M) TING DT =

By Lemma 3.1, we have

|x" = x" |< Sw,
and then

|y xS UM IN DT [ =2 L )

Together (3.5) with (3.6), (3.2), and w6+|1-w|<1, we have

| X — X" |< Ow.
This illustrates that for all ke N,,| X*"' = X" |< W .

In the sequel, we prove that
| X ~X"|<0'6W, Vk=m,tke N,. (3.7)

By (3.4), we get
| X~ X" IS oW =6°6W.

Now we assume that , for any k=>m,, | X ¥~ X"|<6'6W , and prove that (3.7) holds for any
k2m,, .

By the definition of m

- forany k>m,_, and i€{l,2,...,m},there exists a positive integer j,
satisfying m, < s(j)< j <k, such that
M =x" e J()),

71 is the solution of (3.1).

Since for any e {1,2,...,m}, we have that S(]) <s, (]) So we have m, <s, (]) , and then
| x* = x"UM |< @'Sw. Therefore,

| X —x" 1 x

where x

g

<Y EDUM)TIN, (Il = x|
i=1
< 0t+15W,
That is,

| X - X" <0 oW
holds for any k=m,,, .
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Since @€ [0,1), we immediately get that lim _,_x"'=x", and then the sequence {x“'},_ Ny

generated by Algorithm 3 converges to the solution x* of problem (1.1).

Corollary 3.1.Let 8< p(D'B), we (0,2/(1+6)).Andlet A bean M -matrix, and for each
i=L2,..,m, A=M,—N, isan M -splitting. Suppose that 77 = 9/(Z||E,.||), and ¢ satisfies
i=1

that

| Ny P <7, qli k)2 G.i=1,2,...m.(3.8)

If for each i=1,2,...m, k=1,2,..., q(i,k) =g, then the sequence {x*} generated by the

Algorithm 3 converges to the solution x* of the problem (1.1).

4. NUMERICAL TESTS

In this section, we give some numerical results to illustrate the performance of the method
presented in the paper. These results are for the purpose of illustrating new method for solving

LCP discussed in this paper. As we know, in practice the coefficient matrix is often a sparse
matrix, so in the testing, we consider the LCP as follows:

x>0,Ax—b>0,x" (Ax—b) =0,
where b = (sin(27 | n), sin(47z 1 n),---, sin(27))" isan nx1 vector,

cC -1 0 - 0 0 4 -1 0 - 0 0
-1 C -I - 0 0 -1 4 -1 « 0 0
T e ATt [
0 0 0 c -I 0 0 0 4 -1
0 0 0 -1 C 0 0 0 -1 4

and/ is a unit matrix.

For Case m=2 and Case m =3, we consider the nonstationary relaxed synchronous
multisplitting method to solve the above linear complementarity problem. The stopping

criterion of the out iteration is Hx"” - x"” <107°. Let time denote the CPU time(sec.), and

Out-iter denote the number of out iteration. The numerical results are listed in Table 1 and
Table 2.

10
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Table 1: m = 2, Comparison of results between Nonstationary Relaxed Multisplitting Method(NRM) and

Standard Multisplitting Method(SMM)

level NRM SMM
0=05 6=0.1 0=0.01 6=0.001
64*%64 time 3.5100 4.4928 5.6472 7.5036 13.6657
Out-iter 4378 3565 3409 3366 3360
128%128 | time 44.0703 58.44 84.37 112.15 634.69
Out-iter 17516 14262 13635 13462 13438
256%256 | time 613.61 886.83 1439.0 2015.4 9492.8
Out-iter 70082 57059 54549 53860 53761

Table 2:m = 3, Comparizon of results between Nonstationsry Felaxed Multisplitting Method(NEM) znd

Stzndard hiultisplittng Method(Shikd)

level NRM SMM
6=05] 6=0.1]6=001 |4&=0001

o 18876 | 24180 | 52416 | 9.796¢ 11.7157
Outiter | 2035 1852 | 2721 m 3360

bgeppg | 197800 | 28.0022 [ 517923 | 90.6210 166.0631
Outiter | 7733 6630 | 7690 10814 13438

sass e 2642813 | 3863989 | 675.7807 | 9786000 | 27672
Outiter | 30365 | 25306 | 26410 30435 53761

From Table 1 and Table 2, the new nonstationary relaxed multisplittingmethod(NRM) has more
efficiency than the standard multisplitting method(SMM). In our numerical tests, the stopping

. T . .
criterion of the inner iteration in SMM is |[ y"vj (M Y =F" j| <107 . Though NRM has more

number of the out iteration than SMM, the number of inner iteration of NRM is less than
SMM. Therefore, NRM spend less time than SMM. These show us that NRM is more
efficient.

5. CONCLUSION AND REMARKS

Mas ([16]) proposed a nonstationary parallel relaxed multisplitting methods for linear
system. The numerical experiments show that these methods are better than the standard
ones. In this paper, we develop a class of nonstationary relaxed synchronous and
asynchronous multisplitting methods for solving linear complementarity problems with
H —matrices. The convergence of the methods are analysed, and the efficiency is shown

11
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by numerical tests.
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