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ABSTRACT 

 

In this paper we consider some non stationary relaxed synchronous and asynchronous 

multisplitting  methods for solving the linear complementarity problems with their coefficient 

matrices being H−matrices. The convergence theorems of the methods are given,and the efficiency 

is shown by numerical tests. 
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1. INTRODUCTION 
 

Many science and engineering problems are usually induced as linear complementarity 

problems(LCP): finding an ∈ n
x R  such that  

 

0 0 ( ) 0≥ , − ≥ , − = ,x Ax f x Ax f•
(1.1) 

 

where
×∈ n nA R  is a given matrix, and ∈ n

f R  is a vector. It is necessary to establish an efficient 

algorithm for solving the complementarity problem(CP). There have been lots of works on the 

solution of the linear complementarity problem([9,10,14,15,13,18]), which presented feasible and 

essential techniques for LCP.  

 

The multisplitting method was introduced by O’Leary and White [17] and further studied by many 

people [11,12,1,2,3,4,5,6]. In the standard multisplitting method each local approximation solution 
1+k

x  is updated once using the same vector 
k

x . At the k th iteration of a nonstationary multi 

splitting method, each processor i  solves the problem ( ),q k i  times, in each time using the new 

obtained vector to update the 
k

x . [16] presented the following non-stationary multi splitting 

algorithm for linear systems:  

 



         International Journal on Computational Science & Applications (IJCSA) Vol.8, No.1, February 2018 

2 

 

Algorithm 1.(Nonstationarymultisplitting). Given the initial vector 
0

x ,  

 

For 0 1,...= ,k  until convergence  

In processor i , 1=i  to m  

   0 = ,k

iy x  

 

                                For 1=l  to ( ),q k i  

  

                                      1−= +l l

i i i iF y G y b  

    1 ( )

1

+ ,

=

= .∑
m

k q k i

i i

i

x E y

 
 

In [16], relaxed nonstationarymultisplitting methods are also studied. The computational results 

show that these method are better than the standard multisplitting methods. [8] presented a 

nonstationary two-stage multisplitting methods with overlapping blocks. [7] proved the 

convergence of the nonstationarymultisplitting method for solving a system of linear equations 

when the coefficient matrix is symmetric positive definite.  

The purpose of this paper is also on establishing efficient parallel iterative methods for solving the 

LCP. By skillfully using the matrix multisplitting methodology and the block property, we propose 

a class of nonstationarymultisplitting methods, for solving the linear complementarity problems 

(1.1).  

The paper is organized as follows. In Section 2 we propose synchronous 

nonstationarymultisplitting method for solving LCP and establish its convergence theorem. In 

Section 3 we give an asynchronous nonstationary parallel multisplitting method for solving LCP 

and analysis the convergence of the algorithm. In Section 4, some numerical results show the 

efficiency of our algorithms. 

 

2. SYNCHRONOUS  RELAXED  NONSTATIONARY  MULTISPLITTING          

METHOD 
 
Machida([13]) extended the multisplitting methods to the symmetric LCP. And Bai ([1,2,3,4]) 

developed a class of synchronous relaxed multisplitting methods for LCP, in which the system 

matrix is an H -matrix. In this section, by using multisplitting and block property techniques, we 

present a nonstationarymultisplitting method for the LCP(1.1), in which A  is an −H matrix.  

At first we briefly describe the notations. In 
nR  and 

×n nR  the relation ≥  denotes the natural 

components partial ordering.In addition, for , ∈ n
x y R  we write >x y if 1 2 …> , = , , ,

i i
x y i n . 

A nonsingular matrix ( )
×= ∈ n n

ijA a R  is termed −M matrix,if 0≤
ij

a  for ≠i j and
1 0− ≥A . 

Its comparison matrix ( )α< >= ijA  is defined by α =| |
ii ii

a , ( )α = − | | ≠ij ija i j . A is said to 

be an −H matrix if < >A  is an −M matrix. A is said to be an + −H matrix if A  is an −H

matrix with positive diagonal elements.  

 

Definition 2.1. A splitting = −A M N  is termed −M splitting of matrix A  if M  is an −M

matrix and 0≥N .  
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Remark 2.1. Let’s separate the index set {1 2,..., }:= ,S n  into m  nonempty subsets 

( 1 2,... )= , ,
i

S i m  such that 
1=∪ =m

i iS S . We define that  

 
0

( )
0

β ,

,

> , = ∈ ,
= = 

, ,

l i i

l i pq

p q S
E e

otherwise
 

                           where 
1

,
=

=∑
m

l i

i

E I , and 0, >l iE .  

According to the block property, some variables corresponding to the zero entries of ,l iE  need not 

be calculated.  

In this section, we’ll discuss a synchronous nonstationarymultisplitting method.  

 

Algorithm 2. (Synchronous relaxed nonstationarymultisplitting method)  

 

1) Give an initial value 
0

x , and let 0=k .  

 

2) For each i ( 1 2 …= , , ,i m ),  

                                
0, = .i ky x  

For 1=j to ( ),s k i ,  

 

T

0

0

,

, ,

, , ,   
   
   


≥ ,

≥ ,


− = ,

j i

j i j i

i

j i j i j i

i

y

M y F

y M y F

(2.1) 

where 1, − ,= +j i j i

iF f N y .  

3)  

 1 ( )

1

(1 )ω ω+ , ,

=

= + − ,∑
m

k s k i i k

i

i

x E y x (2.2) 

                            where 
1=

=∑
m

i

i

E I , 0>
i

E .  

4) 1:= +k k , return to step 2) .  

 

Lemma 2.1. ([11]) Let 
×, ∈ n n

A B R  satisfy that <A> ≤ <B>. If A  is an H -matrix, then B  is 

also an H -matrix.  

Following from Lemma 2.1, we can get the following lemma.  

 

Lemma 2.2.If 〈 〉 ≤ 〈 〉− | |A M N , and A  is an H -matrix, then M  is an H -matrix. 

  

Lemma 2.3. [11] Let ( )
×= ∈ n n

ijA a R . If there exists a ∈ n
u R , 0>u , such that | | <A u u , 

then there exists a number [0 1)θ ∈ , , such that ( )ρ θ≤A .  

 

Lemma 2.4.If 〈 〉 ≤ 〈 〉− | |A M N , and A  is an H -matrix, then 
1( ) 1ρ −〈 〉 | | <M N .  

 

Proof: By Lemma 2.2, 〈 〉M  is an −M matrix. Therefore, there exists a positive vector                 
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1−= 〈 〉u A e , (1 1 ... 1)= , , , ∈ ne R•
, such that  

 
1 1 1( )− − −〈 〉 | | ≤ − 〈 〉 〈 〉 = − 〈 〉 < .M N u I M A u u M e u  

                      By Lemma 2.3, 
1( ) 1ρ −〈 〉 | | <M N .  

The next lemma is obvious.  

 

Lemma 2.5.  Let 
×∈ n nA R  be an +H -matrix, and ∈ n

x R . If 0≥jx , then  

 ( ) ( )〈 〉 | | ≤ .j jA x Ax
 

 

Lemma 2.6.  Let A  be an +H matrix, ≤ −
i i

A M N  ( 1 2 ...= , , ,i m ) satisfy that 

〈 〉 ≤ 〈 〉− | |
i i

A M N  for each i , and 
∗

x  be the solution of problem(1.1). If 
( ), ,s k i i

y  is generated 

by Algorithm 2, then  

 ( ) 1 ( ) 1 1 ( )( ), , ∗ − , − , ∗ − , ∗| − |≤ 〈 〉 | || − |≤ 〈 〉 | | | − | .s k i i s k i i s k i k

i i i iy x M N y x M N x x  

 

Proof: By Lemma 2.1 and Lemma 2.2, 〈 〉
i

M  is an −M matrix. Consider the following cases:  

(1) 
( )

0
, , ∗> =s k i i

j jy x .  

By (1.1) and (2.1), we have  

 ( ) 0∗ ∗− − ≥ ,
i i j

M x N x f (2.3) 

and 

 ( )( ) ( ) 1 0, , , − ,− − = .s k i i s k i i

i i j
M y N y f (2.4) 

 

Substracting (2.4) from (2.3), we have  

 ( ) ( ) ( )( ) ( ) 1 ( ) 1( ) ( ), , ∗ , − , ∗ , − , ∗− ≤ − ≤ | || − | .s k i i s k i i s k i i

i i ij j j
M y x N y x N y x  

Otherwise, by Lemma 2.5,  

 ( ) ( )( ) ( )( ), , ∗ , , ∗− ≥ 〈 〉 | − | .s k i i s k i i

i ij j
M y x M y x  

Therefore,  

 ( ) ( )( ) ( ) 1, , ∗ , − , ∗〈 〉 | − | ≤ | || − | .s k i i s k i i

i ij j
M y x N y x (2.5) 

 

(2) 
( )

0
∗ , ,> =s k i i

j jx y .  

Similar to case (1), (2.5) holds true。 

(3) 0
∗ >jx , 

( )
0

, , >s k i i

jy .  

By (1.1) and (2.1), we have  

 ( ) 0∗ ∗− − = ,
i i j

M x N x f (2.6) 

and 

 ( )( ) 1 0, , − ,− − = .k i s k i i

i i j
M y N y f (2.7) 

Substracting (2.7) from (2.6), we have  

 ( ) ( ) ( )( ) ( ) 1 ( ) 1( ) ( ), , ∗ , − , ∗ , − , ∗− = − ≤ | || − | ,s k i i s k i i s k i i

i i ij j j
M y x N y x N y x  

and 
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 ( ) ( )( ) ( )( ), , ∗ , , ∗− ≥ 〈 〉 | − | .s k i i s k i i

i i
j j

M y x M y x  

Therefore, (2.5) holds。 

(4) If 
( ), , ∗=s k i i

j jy x , then 
( ) 0∗ , , 

 
 

− =s k i i

j
x y . From this we can deduce that the left side of (2.5) is 

non-positive, but the right side of (2.5) is non-negative. So (2.5) is true.  

In a word,  

 ( ) ( ) 1∗ , , , − , ∗〈 〉 | − |≤| || − |,s k i i s k i i

i iM x y N y x  

or,  

 ( ) 1 ( ) 1∗ , , − , − , ∗| − |≤ 〈 〉 | || − | .s k i i s k i i

i ix y M N y x  

Moreover, by induction,  

 ( ) 1 ( ) 1 1 ( )( ), , ∗ − , − , ∗ − , ∗| − |≤ 〈 〉 | || − |≤ 〈 〉 | | | − | .s k i i s k i i s k i k

i i i iy x M N y x M N x x  

 

 

Lemma 2.7. ([11]) Let ×∈ n nA R  be nonsingular with 1 0− ≥A . Let = − = −A M N P Q  

be two regular splittings of A  and  

 
1 1− −≥ .P M  

Then  

 
1 1( ) ( )ρ ρ− −≤ .P Q M N  

 

Lemma 2.8.  Let = −A M N  and = −A D B  be −M splittings of A, and 

11 22{ }= , , ,L
nn

D diag a a a . If ≤M D , then 
1 1( ) ( ) 1ρ ρ− −≤ <M N D B .  

 

Theorem 2.1.Let 
1( )γ ρ −= D B , (0 2 (1 ))ω γ∈ , / + . And let A  be an +H -matrix, and for 

each 1 2 ...= , , ,i m , = −
i i

A M N  satisfy that 〈 〉 ≤ 〈 〉− | |
i i

A M N . Suppose that 

1

( )η γ
=

= / ∑
m

i
iE , and %s  satisfies that  

 
1 ( )( ) ( ) 1 2 ...η− ,〈 〉 | | ≤ , , ≥ , = , , , .%

s k i

i i
M N s k i s i m (2.8) 

If for each 1 2 ...= , ,k , 1 2 …= , , ,i m , ( ), ≥ %s k i s , then the sequence { }k
x  generated by the 

Algorithm 2 converges to the solution ∗
x  of the problem (1.1).  

 

Proof: Since A  is an +H -matrix, and for each 1 2 …= , , ,i m , 〈 〉 ≤ 〈 〉− | |
i i

A M N  . By 

Lemma 2.4, 1( ) 1ρ −〈 〉 | | <i iM N . Let 1 ( )

1

( )− ,

=

= 〈 〉 | |∑
m

s k i

k i i i

i

T E M N . By Lemma 2.6, we have  

 

1 ( )

1

0

1 1

1

( 1 )

( 1 )( 1 ) ( 1 )

ω ω

ω ω

ω ω ω ω ω ω

+ ∗ , , ∗ ∗

=

∗

∗

−

| − |≤ | − | + | − || − |

≤ + | − | | − |

≤ + | − | + | − | + | − | | − | .

∑

L

m
k s k i i k

i

i

k

k

k k

x x E y x x x

T I x x

T I T I T I x x

 

 

By (2.8), we have  
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1 ( )

1

( )

γ

− ,

=

≤ 〈 〉 | |

≤ .

∑
m

s k i

k i i i

i

T E M N
 

Therefore,  

 ( 1 ) ( 1 )ω ω ωγ ω∗ ∗+ | − | | − |≤ + | − | | − | .k k

kT I x x x x  

Moreover,  

 

1 0

1 1

0

( 1 )( 1 ) ( 1 )

( 1 )

ω ω ω ω ω ω

ωγ ω

+ ∗ ∗

−

∗

| − |≤ + | − | + | − | + | − | | − |

≤ + | − | | − | .

L
k

k k

k

x x T I T I T I x x

x x
 

 

As 0 2 (1 )ω γ< < / + , then 1 1ωγ ω+ | − |< . Therefore, when → ∞k , 
1 0+ ∗| − |→k

x x . 

 

Suppose that A  is an −M matrix, it is an + −H matrix, too. Therefore , we have the 

following corollary.  

 

Corollary 2.1.Let 
1( )θ ρ −= D B , (0 2 (1 ))ω θ∈ , / + . And let A  be an M -matrix, and for 

each 1 2 ...= , , ,i m , = −
i i

A M N  is an M -splitting. Suppose that 
1

( )η θ
=

= / ∑
m

i

i

E , and %s  

satisfies that  

 
1 ( )( ) ( ) 1 2 ...,η− , ≤ , , ≥ , = , , .%

s k i

i iM N s k i s i m (2.9) 

If for each 1 2 ...= , ,k , 1 2 ...= , , ,i m , ( ), ≥ %s k i s , then the sequence { }kx  generated by the 

Algorithm 2 converges to the solution ∗
x  of the problem (1.1).  

 

3.ASYNCHRONOUS  RELAXED  NONSTATIONARY 

MULTISPLITTING METHOD 

Bai([5,6]) proposed a class of standard asynchronous parallel multisplitting relaxation methods for 

LCP. Frommer ([12]) proposed an asynchronous weighted additive Schwarz scheme for solving 

the system of linear equations with multi-splitting method and Schwarz method. Mas [16] 

presented a relaxed nonstationarymultisplitting method for linear systems. Numerical experiments 

demonstrate the asynchronous method is faster than the corresponding synchronous one. The 

purpose of this section aims at extending this asynchronous nonstationary version to solving the 

LCP.  

Let 0 {0 1 2 …}= , , ,N . And for arbitrary 0∈k N , let ( ) {1 2 }⊆ , , ,LJ k m  be a nonempty set. 

Denote ( )
0

{ } ∈= k NJ J k  , ( ) ( ) ( )( )
0

1 2 ∈
= , , ,L

m k N
S s k s k s k  as unbounded sequences, and have 

following properties:  

(1) For any {1 2 }∈ , , ,Li m , 0∈k N , ( ) ≤ .is k k
 

 

(2) For any {1 2 }∈ , , ,Li m , ( )
→+∞

= +∞.
i

k

s klim
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(3) For any {1 2 }∈ , , ,Li m , set ( )0{ }∈ | ∈k N i J k  is unbounded.  

 

Let ( ) ( ) 1 2 …= , = , , ,
i

i

s k s k i mmin . It follows that ( ) ≤s k k  by property (1). It’s obvious 

that ( )
→+∞

= +∞
k

s klim  by property (2).  

 

Let 
0

{ } ∈t t Nm  is a positive integer sequence which is strictly monotone increased.It is produced by 

following procedure:  

 

0m is the least positive integer such that  

 
( )

( )
00

{1 2 }
≤ ≤ <

= , , , ,∪ L
s k k m

J k m  

Similarly, 1+t
m  is the least positive integer such that  

 
( )

( )
1

{1 2 }
+≤ ≤ <

= , , , .∪ L
t tm s k k m

J k m  

It’s easily known that the sequence { }
t

m  exists by the properties of the sets J and S . 

 

  

Algorithm 3. (Asynchronous relaxed nonstationarymultisplitting method)  

1) Given an initial value 
0 0 1 0 2 0…, , , 

 
 

= , , , ∈m nmX x x x R
•

, 
0 0, = ∈i n

x x R , 1 2 …= , , ,i m . 

0:=k .  

2) In processor i ,  

 
( )0 ,, = .is k ii

y x  

 

For 1=v to ( ),q i k , 
,i v

y  is the solution of the following LCP:  

 

T

0

0

,

, ,

, , ,   
   
   


≥ ,
≥ ,


− = ,

i v

i v i v

i

i v i v i v

i

y

M y F

y M y F

(3.1) 

where 1, , −= +i v i v

iF f N y .  

Let  

 

( )

( ) ( )
1

( )

1

(1 )ω ω

,

+ ,

, , ,

,
=

 , ∉ ,


= 
+ − , ∈ ,


∑

k l

k l m
k i q i k k l

i l

i

x l J k

x
E y x l J k

 

where 
( )

1

,
=

=∑
m

k

i l

i

E I , 
( )

0, >
k

i l
E , and ( ) {1 2 … }⊂ , , ,J k m .  

3) 1:= +k k , return to step 2).  

The following lemma is obvious.  

 

Lemma 3.1.Let …∗ ∗ ∗ ∗ 
 
 

= , , ,X x x x
•

, 
1 2 …, , , 

 
 

= , , ,k k k k mX x x x
•

, if  
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 0 1

0…∗ 
 
 

, , , , ⊂ ,∀ ∈ ,k mnX X X X R k N  

and there exists a constant 0δ >  and a positive vector ( )…= , , , ∈ ,
T mn

U u u u R such that 

δ∗| − |≤q
X X U  for each {0 1 2,... }∈ , , ,q k , then there holds  

 δ∗| − |≤ ,v X U  

where 

 

( )

( )

( )

1

2

1

2

 ,
 
 
 ,
 
 
 
 
 

, 
 
 

=
M

m

s k

s k

s k m

x

x
v

x

 

and ( ) ≤ls k k  for all {1 2 ... }∈ , , ,l m . 

 

 

  

Theorem 3.1.Let 
1( )θ ρ −≤ D B , (0 2 (1 ))ω θ∈ , / + . And let A  be an +H -matrix, and for each 

1 2 …= , , ,i m , = −
i i

A M N  satisfy that 〈 〉 ≤ 〈 〉− | |
i i

A M N . Suppose that 
1

( )η θ
=

= / ∑
m

i

i

E , 

and %q  satisfies that  

 
1 ( )( ) ( ) 1 2 ...η− ,〈 〉 | | ≤ , , ≥ , = , , , .%

q i k

i iM N q i k q i m (3.2) 

If for each 1 2 ...= , ,k , 1 2 …= , , ,i m , ( ), ≥ %q i k q , then the sequence { },k i
x  generated by 

Algorithm 3 converges to the solution ∗
x  of the problem (1.1).  

 

Proof:Let ( )1 1 1 1−= 〈 〉 , = , , ..., ∈ n
w A e e R

•
. Then, 0>w , and there exists a constant 

[ )0 1γ ∈ , , such that  

 
1 1 1( ) γ− − −〈 〉 | | = − 〈 〉 〈 〉 = − 〈 〉 ≤ .l l l lM N w I M A w w M e w  

Let 
1

{ }∗

≤ ≤

=
j

j n

w wmin . Then, 0∗ >w . Define 
0

δ
∗

∗

|| − ||= x x

w
, we get  

 
0 δ∗| − |≤ .x x w  

Therefore, we have  

 
1 0 δγ− ∗〈 〉 | || − |≤ ,l lM N x x w (3.3) 

and 

 
0 δ∗| − |≤ ,X X W  

where ( … )= , , ,W w w w
•

.  

Now we will prove that  

         
1

0δ+ ∗| − |≤ , ∈ .k
X X W k N      (3.4) 

Let’s assume that  

                        {0 1 … }δ∗| − |≤ , ∈ , , , .qX X W q k  

If ( )∉l J k , then 1+ , ,=k l k l
x x , and  
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1 δ+ , ∗ , ∗| − |=| − |≤ .k l k lx x x x w  

If ( )∈l J k , then ( )1 ( )

1

+ , , ,

,
=

=∑
m

kk l l q i k

i l

i

x E y . Therefore,  

 
( )1 ( )

1

(1 )ω ω+ , ∗ , , , ∗

,
=

| − |=| + − − |∑
m

kk l i q i k k l

i l

i

x x E y x x  

 
( ) ( )

1

1ω ω, , ∗ , ∗

,
=

≤ | − | + | − || − | .∑
m

k i q i k k l

i l

i

E y x x x (3.5) 

By Lemma 2.6,  

 
( )( ) 1 ( )

( )
,, , ∗ − , ∗| − |≤ 〈 〉 | | | − | .is k ii q i k q i k

i iy x M N x x  

By Lemma 3.1, we have  

 
( ) δ,∗| − |≤ ,is k i

x x w  

and then  

  
( )( ) 1 ( )

( )
,, , ∗ − , ∗| − |≤ 〈 〉 | | | − | .is k ii q i k q i k

i iy x M N x x (3.6) 

Together (3.5) with (3.6), (3.2), and 1 1ωθ ω+ | − |< , we have  

 
1 δ+ , ∗| − |≤ .k l

x x w  

This illustrates that for all 1

0 δ+ ∗∈ ,| − |≤k
k N X X W .  

In the sequel, we prove that  

     
0θ δ∗| − |≤ , ∀ ≥ , , ∈ .k t

tX X W k m t k N
        

(3.7) 

 

By (3.4), we get  

 
0δ θ δ∗| − |≤ = .k

X X W W  

 

Now we assume that , for any ≥
t

k m , θ δ∗| − |≤k t
X X W , and prove that (3.7) holds for any 

1+≥
t

k m .  

By the definition of 1+t
m , for any 1+≥

t
k m  and { }1 2 …∈ , , ,i m , there exists a positive integer j , 

satisfying ( )≤ ≤ <tm s j j k , such that  

 
1 ( ), + ,= , ∈ ,k l j l

x x l J j  

where
1+ ,j l

x  is the solution of (3.1).  

Since for any { }1 2 ...∈ , , ,l m , we have that ( ) ( )≤ is j s j . So we have ( )≤t im s j  , and then         

( ) θ δ,∗| − |≤is j i tx x w . Therefore,  

 
( ) ( )

1

1

1

1θ δ

, ∗ + , ∗

,− ∗

,
=

+

| − |=| − |

≤ | 〈 〉 | ||| − |

≤ .

∑ i

k l j l

m
j s j i

i l i i

i

t

x x x x

E M N x x

w

 

That is,  

 
1θ δ∗ +| − |≤k t

X X W  

holds for any 1+≥
t

k m .  
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Since [0 1)θ ∈ , , we immediately get that , ∗

→∞ =k l

xlim x x , and then the sequence 
0

{ }
,

∈

k l

k Nx  

generated by Algorithm 3 converges to the solution 
∗

x  of problem (1.1).  

Corollary 3.1.Let 
1( )θ ρ −≤ D B , (0 2 (1 ))ω θ∈ , / + . And let A  be an M -matrix, and for each  

1 2 ...= , , ,i m , = −
i i

A M N  is an M -splitting. Suppose that 
1

( )η θ
=

= / ∑
m

i

i

E , and %q  satisfies 

that  

 

 
1 ( )( ) ( ) 1 2 ...η− , ≤ , , ≥ , = , , , .%

q i k

i i
M N q i k q i m (3.8) 

 

If for each 1 2 ...= , , ,i m , 1 2 …= , ,k , ( ), ≥ %q i k q , then the sequence { }kx  generated by the 

Algorithm 3 converges to the solution 
∗

x  of the problem (1.1).  
 

4. NUMERICAL TESTS 
 

In this section, we give some numerical results to illustrate the performance of the method 

presented in the paper. These results are for the purpose of illustrating new method for solving 

LCP  discussed in this paper. As we know, in practice the coefficient matrix is often a sparse 

matrix, so in the testing, we consider the LCP  as follows:  

 0 0 ( ) 0≥ , − ≥ , − = ,T
x Ax b x Ax b  

where ( (2 ) (4 ) (2 ))π π π= / , / , ,L
Tb sin n sin n sin  is an 1×n  vector, 

  

0 0 0

0 0

0 0 0

0 0 0

0 0 0

− 
 

− − 
 −

= , 
 
 −
  − 

L

L

L

M M M O M M

L

L

C I

I C I

I C
A

C I

I C

4 1 0 0 0

1 4 1 0 0

0 1 4 0 0

0 0 0 4 1

0 0 0 1 4

− 
 

− − 
 −

= , 
 
 −
  − 

L

L

L

M M M O M M

L

L

C  

 

and I  is a unit matrix.  

 

For Case 2=m  and Case 3=m , we consider the nonstationary relaxed synchronous 

multisplitting method to solve the above linear complementarity problem. The stopping 

criterion of the out iteration is 1 610+ −− <k kx x . Let time denote the CPU time(sec.), and  

Out-iter denote the number of out iteration. The numerical results are listed in Table 1 and 

Table 2.  
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  Table 1: m = 2, Comparison of results between Nonstationary Relaxed Multisplitting Method(NRM) and             

Standard Multisplitting Method(SMM) 

 

level NRM SMM 

θ = 0.5 θ = 0.1 θ = 0.01 θ = 0.001 

64*64 time 3.5100 4.4928 5.6472 7.5036 13.6657 

Out-iter 4378 3565 3409 3366 3360 

128*128 time 44.0703 58.44 84.37 112.15 634.69 

Out-iter 17516 14262 13635 13462 13438 

256*256 time 613.61 886.83 1439.0 2015.4 9492.8 

Out-iter 70082 57059 54549 53860 53761 

  

From Table 1 and Table 2, the new nonstationary relaxed multisplittingmethod(NRM) has more 

efficiency than the standard multisplitting method(SMM). In our numerical tests, the stopping 

criterion of the inner iteration in SMM is 
T

810｜ ｜

, , , −   
   
   

− <i v i v i v

i
y M y F . Though NRM has more 

number of the out iteration than SMM, the number of inner iteration of NRM is less than 

SMM. Therefore, NRM spend less time than SMM. These show us that NRM is more 

efficient.  

5. CONCLUSION AND REMARKS 

Mas ([16]) proposed a nonstationary parallel relaxed multisplitting methods for linear 

system. The numerical experiments show that these methods are better than the standard 

ones. In this paper, we develop a class of nonstationary relaxed synchronous and 

asynchronous multisplitting methods for solving linear complementarity problems with 

−H matrices. The convergence of the methods are analysed, and the efficiency is shown 
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by numerical tests.  
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