
International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

DOI : 10.5121/ijesa.2023.13401 1

DESIGN OF AN EMBEDDED SYSTEM: BEDSIDE

PATIENT MONITOR

Ertan Ozturk1, Ozan Emre Yapıcı2, Mehmet Unal2 and Osman Çakıcı2

1School of Electrical Engineering and Computer Science, University of North Dakota,

Grand Forks, ND, USA
2ERETNA Medical LLC, Maltepe, Istanbul, TURKEY

ABSTRACT

Embedded systems in the range of from a tiny microcontroller-based sensor device to mobile smart phones

have vast variety of applications. However, in the literature there is no up to date system-level design of

embedded hardware and software, instead academic publications are mainly focused on the improvement

of specific features of embedded software/hardware and the embedded system designs for specific

applications. Moreover, commercially available embedded systems are not disclosed for the view of
researchers in the literature. Therefore, in this paper we first present how to design a state of art embedded

system including emerged hardware and software technologies. Bedside Patient monitor devices used in

intensive cares units of hospitals are also classified as embedded systems and run sophisticated software

and algorithms for better diagnosis of diseases. We reveal the architecture of our, commercially available,

bedside patient monitor to provide a design example of embedded systems relating to emerged technologies.

KEYWORDS

Patient monitors, embedded systems, System on Module, cross-building, embedded hardware.

1. INTRODUCTION

Embedded systems are application specific computer systems such that include hardware and

software components based on the target application such as household electronic equipment,
automobile electronic systems, communication devices, defence and space equipment and

medical devices, etc. Similarities between general purpose computers and embedded systems are;

both have the basic computer architecture consisting of a processing unit, a memory and

Input/Output (I/O) devices, both run a software, and can be monitored and may have human
interface. On the other hand, embedded systems are application specific computer systems, so

their hardware and software are tailored according to the target application. Due to the very wide

range of applications, an embedded system can be from a very tiny Microcontroller (MCU)
based device with a few kilo byte memory and storage, and several Mega Hertz processor speed

to a System on Chip (SoC) based device having a Giga Byte (GB) level memory and storage as

well as Giga Hertz (GHz) level processor speed. Embedded systems have been a hot topic for

industrial applications for the last decade, however instead of system level design of embedded
hardware and software, the academic papers mainly focus on the improvement of specific

features of embedded software/hardware [1-2] and the embedded system designs for specific

applications [3-4].

Bedside Patient Monitor devices that provide momentarily display of the multiple physiological
signals of patients are also considered as embedded systems. A generic Patient Monitor (PM)

continuously monitors a patient’s physiological signals which are electrocardiogram (ECG),

https://airccse.org/journal/ijesa/current2023.html
https://doi.org/10.5121/ijesa.2023.13401

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

2

Respiration, Oxygen Saturation (SPO2), Invasive Blood Pressure (IBP), Non-Invasive Blood

Pressure (NIBP), Temperature and Carbon-dioxide (CO2) in a waveform format (trace) and as

numerical values [5]. The monitored physiological signals are interpreted by medical

professionals for diagnostic purposes in intensive care units, emergency services, cardiological

follow-up and post anaesthesia care units of hospitals. PMs are located next to the patient beds, so

traditionally called bed-side patient monitor, the data (vital signals) collected by a bed-side
monitor, is also transferred to a central system located in nurse rooms to monitor the conditions of

all inpatients within a unit in a single big screen.

Early primitive vital signal monitors were started to be used in the 19th century, however modern
PMs appeared in the mid-20th century following the birth of solid-state electronic, recently have

been substantially improved parallel with advancements in digital electronics, software and

communications technologies. High speed processors, high capacity memory and storage units
used in modern PMs allow to run very sophisticated application software and advance diagnostic

algorithms at the top. The usability of a PM and its interface by medical personal and the

integration of multiple devices are very critical in critical care units [6], hence requires a user-

friendly and adaptable software application running on it.

Monitor devices are also required to connect other devices to transfer their data and even to

display transferred data within the same interface remotely. Hence, patient’s vital signals are

transferred to a central monitor device that is usually a high-power personal computer (PC)
running a Central System software to display the vital signals of all patients away from the

patient’s bedside in a hospital unit. The advancement in communication technologies provide a

high-data rate wire and wireless data transfer via Ethernet and Wi-Fi, respectively. Consequently,
medical practitioners can observe their patients’ physiological signals by using mobile devices

which are connected to the central system.

Research on patient monitors is mostly driven by medical industry, but the design and the

development of patient monitor devices by the industry are generally not disclosed due to
business reasons. Manufacturers of PM mostly publish White Papers about their products which

mainly focus on the functionality of the PM without getting into its design [7]. Universities also

conduct researches on patient monitoring such as given in [8-13], however these works and others

available in academic literature don’t consider the hardware and software designs of a full PM
for the monitoring of all vital signals. These works mainly focus on the monitoring of one or two

vital signals by using simple off-the shelf-cards and implantation of simple software for receiving

and sending signals.

On the other hand, remote-healthcare that requires a remote access to patient’s monitored vital

data has been the subject of research and development works for more than a decade [14]. The

Internet of Things (IoT) has been widely identified as a potential solution for remote healthcare,
and has thus been the focus of much recent research [14-16]. Obviously, these works more

focus on the remote access technologies and its security.

In this paper, we present the hardware and software design of our patient monitor device which
runs our developed application software consists of the back-end and the front-end to monitor

all vital signals of a patient. Our monitor also has remote patient monitoring capability. Hence the

main contribution of this paper is in two folds: The first is presenting an approach to design an

embedded system which can run an embedded operating system (OS) and a sophisticated
application software, over a main board that can be designed by using emerged electronic

technologies. Then, the second is to present the state-of art architectural design for the hardware

and software of a bed side patient monitor available commercially first in the literature. The rest
of the paper is organized as: The section 2 reveals first, the design of a hardware hierarchy from a

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

3

SoC to an Embedded Board, then the attributes of embedded software design. The section 3
presents the architecture of our patient monitor device including its hardware, software and

network communication. Section 4 concludes the paper.

2. DESIGNING EMBEDDED SYSTEM

2.1. Embedded Hardware

An embedded hardware includes a processing unit, memory and I/O devices based on the

applications; for instance, a sensor board includes a sensor, Analog Digital Converter (ADC), and

a communication interface, whereas an advanced embedded system may include keypads, display
units, touch screens, various communication interfaces to communicate with external devices.

Although, there are off-the-shelf embedded boards available on the market to be used for various
applications; an application specific embedded hardware/board may still need to be designed.

From the processing point of view, there are two options; Microcontroller and System on Chip

(Soc). Microcontrollers include a processor, memory power management circuits, timing

resources, communication interfaces, and analogue interfaces in a single chip.

On the other hand, a SoC is a newer technology, and also include a processor/CPU, memory, and

communication interfaces in a single chip. However, the speed of the processor in a SoC,
typically in the level of several hundred MHz or even GHz, while it is typically from 20 MHz to

100 MHz for microcontrollers. In terms of the capacity of the memory; microcontrollers typically

have Kbytes level memory, while SoCs may have GB level memory. SoC also offer more diverse
communication interfaces compared to microcontrollers like the support for an USB interface.

Figure 1. Hardware hierarchy from a SoC to an Embedded Board

Recently, another technology called System on Module (SOM) has emerged [17]. A SOM has
more hardware units than a SoC such that it includes a large storage, audio and display interfaces,

communication interfaces, camera interface. On the other hand, a SOM is not a single chip,

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

4

instead it is a module in the size of a credit card, even smaller, but still needs external circuits to
be a complete self-sufficient embedded board. Hence a SOM includes General Purpose Input

Output (GPIO) pins as many as few hundreds in connection to driver circuits of the

application designed in a carrier board. Consequently, a SOM and its carrier board constitutes

a self-sufficient embedded board as seen in Figure 1, where the hierarchy from a SoC to SOM,
then to an embedded board is shown. The SOM module includes GB level storage, built-in

communication and display interfaces, besides other processors like Graphical Processor Unit

(GPU) etc. On the other hand, the application specific circuits such as display, Communication,
audio circuits as well as power and battery circuits and the connector and jacks can be mounted on

the carrier board.

2.2. Embedded Software

An embedded system whether it is a tiny microcontroller based or a powerful SoC based includes

a software to perform a targeted task. The complexity of the embedded software based on the
targeted task. For instance, a temperature sensing board requires just few lines of codes, whereas

a medical device like patient monitoring systems requires very sophisticated software written

preferably by object-oriented programming.

Requirements for an Embedded System Software are reliability, efficient memory use, low

hardware requirement, tailored to hardware, and low power consumptions. The complexity of the
application software also determines the required hardware, since the software of basic

applications are not complex, they can be directly embedded into processing unit

(microcontroller), hence they are called Firmware. Firmware programming is the writing codes

directly into the processor without an operating system. This programming is written specific to
hardware, which requires to consider the specific build of the hardware. High level languages, for

example C programming, can be used for firmware programming, however in such case it is

different than regular high-level C, and called Embedded C that includes specific syntax to
control the ports and memory of hardware. Low level Assembly languages are also used for

embedded firmware programming.

On the other hand, a complex software cannot be embedded directly into the processing units,
instate an Operating System (OS) is used between the application software and embedded

hardware. However, since the system is still application specific, the OS can also be tailored

according to the hardware and the application requirements, so it is called Embedded Operating

System.

An embedded OS consists of three parts: Boot-Loader, Kernel and Root File-System. These parts

need to be compiled for the target embedded hardware in a powerful machine (Host) by cross-

compiling, then can be flashed in to the target embedded system.

Therefore, the other unique feature of embedded software is cross-compiling that means

compiling the developed application software and OS in a powerful host machine i.e., in a PC for

the targeted hardware, described below.

2.3. Host and Target Systems

Embedded systems even SoC based ones have limited hardware and software capabilities than

those of personal computers, Hence, Embedded Software Development is mostly done in a

personal computer called a Host System. Then, the embedded system for which the software is

developed is called a Target System. Host-Target method is used in the development of both
MCU based and SoC based embedded systems. In a Host System, the developed software codes

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

5

whether it is written by using high level programming or assembly programming, needs to be
built for the Target System, this is called Cross-Building. The application software can be built

also for the host system, and executed on it. This is called native build compared to cross-build.

Native build provides to run, debug and test the developed software first on the powerful host

system. After cross-building the software, it is installed in the target system by using an external
Hardware/software tool called flashing tools. The Figure 2 illustrates a cross-compiling of an

application software in a host machine, then flashing it in to the target Embedded system.

Figure 2. Cross-building of an embedded software

2.4. Embedded Communications

In an embedded hardware, the processing unit communicates with other Integrated Circuit (IC) or

modules on the board or with external peripheral boards and devices attached to it. For example,
the processor unit may communicate with on-board sensor IC, power- management IC, also with

on-board modules such as GSM, WiFi, Bluetooth, SD-Card modules. The supported

communication interfaces by SoC and MCU are serial parallel interface (SPI), Integrated-to-

Integrated Circuit (I2C) and Universal Asynchronous Receiver / Transmitter (UART), which are
ideal for the above communications where there is no need for high speed and no long-distance

data transfer.

3. HARDWARE AND SOFTWARE ARCHITECTURE OF OUR PATIENT

MONITOR

Our bedside patient monitor shown in Figure 3 consists of our designed and third-party hardware

components. Obviously, the third-party hardware units and the mechanical design of the patient

monitor are not in the scope of this paper.

Our bedside monitor can continuously monitor and record ECG with 7 types of Arrhythmia,

Respiration Rate (RR), SPO2, CO2, NIBP, End-tidal CO2 (EtCO2), up to 4 Channel IBP and

dual-TEMP parameters. It has adaptive properties for adult, paediatric and new-born patients. It
provides multi-parameter waveforms, alarms, and status messages. It allows the monitored

functions to be recorded and to be monitored again when required. The monitor has the ability

to connect to a local network Laser and thermal printer. Physiological signal waveforms, reports
and tables generated by the monitor can be printed out via network printers. Our patient monitor

device complies with IEC 60601-1 medical standard [18], hence it is CE certified and has been

using recently in several different hospitals in Turkey [19].

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

6

Figure 3. ERETNA bed side patient monitor

3.1. The Embedded Hardware

The high-level block diagram for the hardware depicted in Figure 4 presents our designed

hardware in green colour, whereas the third parties are in blue colour. Patient Monitors collect
patient’s physical signals via sensors attached to the patient body. All analogue data from

sensors are feed to the Physiological Data Acquisition Module, in which analogue data is

converted to digital and based on the Acquisition Module and relating vital signal. Digital data at

the output of acquisition module is fed to the main-card at the top of which our application
software run.

Figure 4. Hardware of the Bedside Patient Monitor

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

7

Our main card was design based on the system requirements and the software requirements, and it
was built around an ARM processor-based SOM. The main card includes the drive circuits to

interface the peripheral devices and modules such as an audio circuit for alarm soundings, a

LVDS circuit that drives LED touch screen display, a network circuit for ethernet and Wife

connections. In addition, the main card includes a power circuit to convert AC power to DC and a
battery charger circuit, then a voltage regulator circuit to power the ICs with 3.3V, 5V voltages,

also a circuit for the keypad. The drive circuits for data communication interfaces (UART, SPI,

USB) are implemented in the main board to provide communication between the main card and
the physiological signal modules, also provide extra USB ports. Finally, the connectors and jacks

to connect the main card to external units of the system are embedded in our main card.

The Back-light card shown in Figure 5 was built to supply current to the LED touchscreen. The
alarm led card including coloured LEDs was built to reflect the visual alarming feed by the main

card. The keypad includes 10 buttons with their wirings, a red-green LED as on/off indication of

the monitor, and an ambient light sensor to adapt the light of the screen according to the ambient
lighting.

3.2. The Application Software

The development environment for our application software is a cross-platform design and

development tool, Qt [20] running at the top of a regular PC with an Ubuntu Linux operating

system (Host). The cross-platform design and development tool allows to cross-built our
application software for our embedded Linux and ARM based architecture (Target) as seen in

Figure 5.

Figure 5. Cross-building of the system

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

8

Our application software was developed by using C++ on the Qt platform that includes tool-
chains for cross building and compiling. The application software basically handles two parts, the

backend and the frontend. The backend is the part that communicates with the hardware and

includes the implementation of the physiological signal algorithms and calculations. It enables the

data to be recorded or exported. There are several implemented communication modules in the
backend such as the data transfer to other devices on the network, reading data from the monitor

keypad or touch screen, screen brightness settings, battery information.

The data signals processed by the backend are sent to the graphical user interface, which is

QML based frontend for the visualization, hence interfacing with users. The interface is aimed at

being user-friendly, reducing the errors for busy medical personnel. Hence, the front-end was
designed to make the interface simple and without any confusion for the users, while keeping

the most significant vital parameters on the main screen and the others available based user’s

preference in the setting section menu. The screen view of the application software is seen in

Figure 6.

Figure 6. The application software

The most significant attribute of our application software is that it can be built to run on various

operating system (Linux, Windows, iOS, Android) and hardware platforms (ARM, Intel, AMD

processors based). Consequently, the central system software that collects all patient’s data from
bed-site monitors in a unit via a local network to display all in a single big screen, is the multi-

windows version of our application software and it is cross-built for Intel based personal

computers having Linux or Windows OS. Moreover, our application software is cross-built for

Android and iOS operating system to run over a mobile device, tablet or smart phone.

3.3. The Embedded Linux OS

Pre-built Linux distributions are readily available; however, they are typically very large, so may

not be proper for light hardware embedded systems, besides they are not available for all

hardware architectures, and they are not easy to customize. Hence, we built our own Embedded
Linux by using the buildroot tool available online [21]. That tool allows to include processor

architecture, required modules and libraries in the built process. Hence, our embedded OS is

much lighter than the available Linux distributions to relax the hardware of the bed side patient
monitor device.

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

9

3.4. Network Communications of our Design

Our monitor is capable of Ethernet and Wi-Fi connectivity through a switch that makes up our

local subnet. The data transmission rate between the bedside monitor and the central system and
between the bedside monitor and the mobile device is over the UDP protocol with a rate of 80

packets per second. While the patient's data is transferred from the bedside monitor to the central

monitor, the configuration commands from the central monitor are transmitted to the bedside
monitor. In addition to UDP, multicast and broadcast transmissions are used to reach mobile

devices in the network, hence the connection is unidirectional from the bedside to the mobile

application. The size of a UDP packet as bytes per second depends on the transferred vital signal.

In order to reduce the heavy traffic on the network, the bedside monitor does not send all signals.
Only the signals of the active parameters are transmitted to the other party. If the user wants to

activate a parameter at any time, the activated parameters and signals are automatically

transmitted to the other party.

Another network connection of our bedside monitor is with hospital information systems (HIS)

that is done via HL7 protocol [22]. The vital data along with the patient’s demographic data is

sent once every 10 seconds in the form of an ORU message defined in HL7 version 2.3.
Consequently, our patient monitor system is ready for remote healthcare due to the availability of

network connection and its flexible cross-built software.

4. CONCLUSIONS

In this paper, we first explain the design of an embedded system to run sophisticated application

software at the top of an embedded operating system, in order to provide a guide for researchers

who are new in this field. Then, we present the state of art software and hardware architecture of
our patient monitor that is commercially available. Obviously, the business confidential details of

our design are not disclosed. Nevertheless, it provides an overview picture of the design relating

to the recent hardware and software technologies, which is not available in the literature. Finally,
the design of our patient monitor provides an easy expansion to remote patient monitoring within

the concept of remote healthcare due to its flexible and the support of multi-platforms.

REFERENCES

[1] Perri, S. Spagnolo F., Frustaci, F, Corsenello P., (2023) “Design of Leading Zero Counters on

FPGAs”, IEEE Embedded Systems Letters, Vol. 15, No. 3, pp.149-152.

[2] Nagesh, K., Landsnes, O., Fuglestad, T., Svensen, N., Singhal, D., (2019) “Enhanced Embedded

Linux Board Support Package Field Upgrade – A Cost Effective Approach”, International Journal

of Embedded Systems and Applications (IJESA), Vol 9, No.1, pp.11-20.

[3] Lavanya, A., Jeevitha, M., Bhagyaveni, M. A., (2019) “IoT-Enabled Green Campus Energy
Management System”, International Journal of Embedded Systems and Applications (IJESA), Vol 9,

No.2, pp.21-35.

[4] Correa, C., Dujovne, D., Bolano F., (2023) “Design and Implementation of an Embedded Edge

Processing Water Quality Monitoring System for Underground Waters”, IEEE Embedded Systems

Letters, Vol. 15, No. 2, pp.81-87.

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

10

[5] Khandpur, R.S. (2014), Handbook of Biomedical Instrumentation, Chapter 6. Patient Monitoring

System, 3rd Edition, McGraw Hill Education (India) Private Limited.

[6] Andrade, E., Quinlan, L., R., Harte, R. Byrne, D., Fallon, E., Kelly, M., O’Connor, P., (2018), “State

of the Art and Future Trends in the Usability of Patient Monitors”, International Conference on

Human Systems Engineering and Design: Future Trends and Applications, pp.338-344.
[7] Philips Patient Monitoring Solution, https://www.usa.philips.com/healthcare/solutions/patient-

monitoring, [Online] Available, (accessed Oct 28,2023)

[8] Ramya, V., Palaniappan, B., Kumari, A., (2011) “Embedded Patient Monitoring System”,

International Journal of Embedded Systems and Applications (IJESA), Vol.1, No.2, pp.51-63.

[9] Kang, J., Yoo S., Oh D., (2013), “Development of a Portable Embedded Patient Monitoring

System”, International Journal of Multimedia and Ubiquitous Engineering, Vol.8, No.6, pp.141- 150

[10] Visvesvaran, C, Karthikeyan, N. K., Kumar, J. B., Kaviya, P., Kaviya S., (2022) “Advanced Patient

Monitoring and Alert System with Auto Medicine Suggestion using Machine Learning”,

Proceedings of the Third International Conference on Electronics and Sustainable Communication

Systems.

[11] Kanchikere, J. (2019), “Embedded patient monitoring system”, International Journal of Power

Electronics and Drive System (IJPEDS), Vol. 10, No. 1, March 2019, pp. 388-397.
[12] Balakrishnan, (2022) “Sensor Based Health Monitoring System Using Embedded Technology”,

8th International Conference on Advanced Computing and Communication Systems (ICACCS).

[13] Jain N. P. (2012), “An Embedded, GSM based, Multiparameter, Realtime Patient Monitoring

System and Control An Implementation for ICU Patients”, World Congress on Information and

Communication Technologies.

[14] Baker, S.B., Xiang, W., Atkinson, I. (2017), “Internet of Things for Smart Healthcare: Technologies,

Challenges, and Opportunities”, IEEE Access, Vol.5, pp. 26521-26544.

[15] Al-Fuqaha, A., Guizani, M., Mohammadi, M. Aledhari, M., Ayyash, M., (2015), “Internet of Things:

A Survey on Enabling Technologies, Protocols, and Applications”, IEEE Communication Surveys

& Tutorials, Vol.17, No.4, pp. 2347-2376.

[16] Islam, R., Kwak D., Kabir, H., Hossain, M., Kwak, K., (2015), “The Internet of Things for Health
Care: A Comprehensive Survey”, IEEE Access, Vol.3, pp.678-708.

[17] Customized system on-modules and embedded electronics for when versatility and time to market

matter, [Online] Available: https://beaconembedded.com/ (accessed Oct 28, 2023).

[18] IEC 60601-1-11:2015, Medical electrical equipment — Part 1-11: General requirements for basic

safety and essential standard: Online https://www.iso.org/standard/65529.html, (accessed August 28,

2023).

[19] ERETNA Medical, [Online] Available: https://www.eretna.eu/home, (accessed Oct 28,2023).

[20] Qt Framework, [Online] Available: https://www.qt.io/product/framework, (accessed Oct 28, 2023).

[21] Buildroot Making Embedded Linux Easy, [Online] Available: https://buildroot.org/, (accessed Oct

28, 2023).

[22] HL7 International [Online] Available: https://www.hl7.org/ (accessed Oct 28,2023).

http://www.usa.philips.com/healthcare/solutions/patient-
http://www.iso.org/standard/65529.html
http://www.eretna.eu/home
http://www.qt.io/product/framework
http://www.hl7.org/

International Journal of Embedded Systems and Applications (IJESA), Vol 13, No.4, December 2023

11

AUTHORS

Ertan OZTURK is a faculty member in the School of Electrical Engineering and Computer Science at

University of North Dakota. He got his MS and PhD degrees in Electrical and Computer Engineering at

Illinois Institute of Technology (IIT), Chicago. Previously, he was the technical leader of an embedded

software and hardware team to develop and manufacture a patient monitor system at ERETNA Medical

located in Istanbul, Turkey. He is the author 40 peer reviewed Journal and Conference papers, and he has

supervised 2 PhD and 12 Master theses.

Ozan Emre YAPICI is recently the technical leader and senior embedded software engineer at ERETNA

Medical, Istanbul. He got his BS degree in Computer Engineering from Gebze Technical University,

Turkey. Previously he worked as a software engineer for image recognition and processing at Panel

Yazilim, Istanbul.

Mehmet UNAL is the project manager at ERETNA Medical. He is also specialized in intensive care

medical devices. He got his BS degree in Biomedical Technology from Electronics and Computer

Department at Marmara University, Istanbul.

Osman ÇAKICI got his BS degree in Biomedical Technology from Electronics and Computer Department

at Marmara University, Istanbul. He is the founder and the CEO of ERETNA Medical that is an R&D

company for medical devices. He is also the founder of MESA Medical that has provided solutions and
technical services to intensive care units of more than 100 hospitals in Turkey.

	1. Introduction
	2.1. Embedded Hardware
	2.2. Embedded Software
	2.3. Host and Target Systems
	2.4. Embedded Communications
	3. Hardware and Software Architecture of our Patient Monitor

	3.1. The Embedded Hardware
	3.2. The Application Software
	3.3. The Embedded Linux OS
	3.4. Network Communications of our Design
	4. Conclusions
	References

