
International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.2, March 2015

DOI:10.5121/ijfcst.2015.5203 29

EDGE-TENACITY IN CYCLES AND COMPLETE

GRAPHS

Abolfazl Javan, Mina Akhavan, Ali Moeini and Dara Moazzami

Department of Algorithms and Computation, Faculty of Engineering Science, School of
Engineering, University of Tehran, Tehran, Iran

ABSTRACT

It is well known that the tenacity is a proper measure for studying vulnerability and reliability in graphs.
Here, a modified edge-tenacity of a graph is introduced based on the classical definition of tenacity.
Properties and bounds for this measure are introduced; meanwhile edge-tenacity is calculated for cycle
graphs and also for complete graphs.

KEYWORDS

Graph, Edge Tenacity

1. INTRODUCTION

Since that network components may be destroyed, it is necessary to study networks vulnerability.
So far various criteria have been presented to measure the vulnerability and reliability of
networks [9]. All measures have been based on that how the loss of part of the graph (vertices or
edges) will affect the graph structure in the worst case. For example, vertex-connectivity is the
minimum number of vertices whose removal disconnects the graph and edge-connectivity is the
smallest number of edges whose removal disconnects the graph. Integrity [7] and Toughness [8]
is two other measures for calculating network vulnerability.

For the first time graph tenacity is studied by Cozzens, Moazzami and Stueckle [2, 3]. Cozzens et
al. introduced two measures of network vulnerability. One of them is the tenacity (T(G)) that is
introduced for studying vertex vulnerability. The other is the measure that is called mix-tenacity
by Moazzami and has been used for studying edge vulnerability. In [4] Moazzami studied
integrity, connectivity, toughness and tenacity in some graphs. His results showed that tenacity is
a better measure for studying vulnerability and reliability in the most graphs.
The vertex tenacity of a graph called Tv(G) is defined as:

Vertex Tenacity: }
)(

)(
{min)(
)(AG

AGA
GT

GVAv

 (1)

where A is a subset V(G) the set of all vertices of the graph G, τ(G − A) is the number of vertices
in the largest component of (G − A) and ω(G − A) is the number of components of (G − A). Also
mix-tenacity is defined as:

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.2, March 2015

30

Mixed Tenacity: }
)(

)(
{min)(

)(AG
AGA

GT
GEAm

 (2)

where A is a subset of E(G), the set of all edges of the graph G, τ(G − A) is the number of
vertices in the largest component of G-A and ω(G − A) is the number of components of (G − A).
In [5, 6] Piazza et al. used (2) as edge-tenacity but this vulnerability measure is the combination
of edges subset ()(GEA) and the number of vertices in the largest component (τ (G − A)). It
is visible that in Tm (Mix-tenacity) the number of removed edges is added to the number of
vertices in a largest component of the remaining graph. In this definition both edges and vertices
are involved which is not rational. To eliminate this weakness, Moazzami and Salehian [1]
presented a new measure and named it edge-tenacity that in new one just edges are involved.
Edge-tenacity is defined as:

Edge Tenacity: }
)(

)(
{min)(
)(AG

AGA
GT

GEAe

 (3)

where A is a subset of E(G), the set of all edges of the graph G, τ(G − A) is the number of edges
in the largest component of (G − A) and ω(G − A) is the number of components of (G − A).

2. EDGE-TENACITY OF SOME SPECIAL GRAPHS

Here, we calculate precisely the edge-tenacity for complete graphs and cycle graphs based o n (3).

Theorem 1: If Cn be the cycle graph with n vertices, then

.
Proof: Suppose that the number of edges and vertices in Cn are |E|=m and |V|=n respectively. We
know that the number of edges and vertices in Cn are equal (m=n). Also it can be easily
understood that with removing ω edges, (ω >0), ω components remain in the graph, where ω is a
constant. Based on (3) to determine the minimum value of Te, the numerator of the fraction ω +
τ(G − ω) must become minimum. Since τ(G − ω) is the number of edges in the largest component
then for getting the minimum value of Te, it is necessary to distribute |E| − ω edges between ω
components equally. Therefore Te is as:

}.1min}min)(
11

mm

CT
mmne (4)

Since |E|=m is constant, it needs that ω changes between 1 to m. Based on (4) one easily conclude
that in this range, the minimum value of Te will achieve when ω is maximum, namely n (m=n).
Therefore, Te is calculated as:

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.2, March 2015

31

111)(

n
n

nn

m
m

mm

CT ne .
(5)

Theorem 2: If Kn is a complete graph with n vertices, then

.
2

1)(

nKT ne (6)

For calculation of the edge-tenacity in a complete graph, we first prove some lemmas and then
edge-tenacity is calculated.

Lemma 1: The edge-tenacity for the complete graph Kn is calculated in the case that the
generated components after removing edges are all complete subgarphs.

Proof: The proof is based on contradiction. Suppose that the edge-tenacity for the complete graph
is calculated in the case that at least one of the generated components is not a complete subgraph.
Therefore, this component has at least one edge less than the complete graph. By adding this edge
to the component if the component is the largest component of the graph, the number of removed
edges will be one less and the number of edges of the largest component will be one more that
finally does not have any effect on obtaining the edge-tenacity. Also, by adding the removed edge
to the component if the component is not the largest one in the graph, the number of removed
edges is decreased by one. It means the new value of edge-tenacity is less than the assumed value
which contradicts with the assumption of the theorem. Therefore, we can conclude that in order to
calculate the edge-tenacity of a complete graph, all generated components of it, after removing
edges, can be considered complete.

Lemma 2: Assume that it is supposed to distribute n vertices between ω complete components.
The ith component has ci vertices so that

 nccc ,...0 21 (7)

Where ci is the number of allocated vertices to ith component that 1≤i≤ ω. The maximum value of
the total number of edges for all complete components which can be stated by the following
equation

1 2i

ic , (8)

Occurs when the following conditions are satisfied:

1,11,1 ncici (9)

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.2, March 2015

32

 (Note that

2
ic is the number of edges of ith complete component and therefore (8) is the total

number of edges for all complete components)
Proof: The proof is based on contradiction. Suppose that there exists an integer called k which
makes the value in expression (8) maximum such that ck>1, k< ω.

It is known that

22
)1(

2
)1(

22

22
 cccccccccc kkkkk

 , (10)

If ck>1 then due to (7) cω>1 and in consequence we have

0)1)(1(kcc (11)

By inserting the above in (10) we have

.2
1

2
)2)(1(

2
2222

)1)(1(
2222

22

2222

k

kkkkkk

k
kkkkk

cc

cccccccccccc

cccccccccccc

 (12)

Rearranging (8) using (12) yields

.2
1

2
1

22

22222
1

1

1

1

1

1

1

11

cccc

ccccc

kj

j
k

i

i

kj

jk
k

i

i

i

i

 (13)

The right side of (13) is the total number of edges for all complete components in the case that
pick (ck−1) vertices from kth component and place them to ωth component. Therefore, the number

of edges of kth component will be

2
1 and the number of edges of ωth component will be

2
1 cc . In other word, picking (ck−1) vertices from kth component and placing them to ωth

component makes (8) greater. So (13) contradicts with the assumption that (8) reaches to its
maximum value with the above k. Finally, it can be concluded that the maximum value of (8)
occurs when the condition (9) is satisfied.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.2, March 2015

33

Lemma 3: Assume that it is supposed to distribute n vertices between ω complete components.
The ith component has ci vertices so that

 nccc ,...0 21 (14)

Where ci is the number of allocated vertices to ith component that 1≤i≤ ω.

Therefore the minimum value of (15)

 222
1

 ccn
i

i (15)

Occurs when vertices are placed based on (16).

1)2,mod(21,1,
2

3,
2

1

0)2,mod(21,1,
2

2

1

1

nificncnc

nificncc

i

i

 (16)

Proof: Rearranging (15) yields

,22222
1

11

i

i

i

i cnccn (17)

Where n is constant. To minimize (17), the value of

1

1 2

i

ic should be maximum. According to

Lemma 3, this occurs when vertices are placed based on the following arrangement.

1)1()(,21,1 1 cncici . (18)

To maximize the value of

1

1 2

i

ic , cω-1 should be maximum. It is assumed that n and ω are

constants. So, cω, which must satisfy (14), should be minimal. Therefore, each of the ,1ic

,21 i must take one vertex and the remaining vertices distribute almost equally between
cω-1 and cω. If n+ω is even, then the number of remaining vertices namely n−ω+2 is even too.
Because (n+ω) + (n−ω+2) = 2n+2 is even. In this case, cω-1 and cω should take the same value. If
n+ω is odd, then the value of cω should be one more than cω-1.

Now we return to the proof of Theorem 2.

Proof: First, it is assumed that ω be the number of generated components. To minimize the edge-
tenacity with respect to ω, it is enough to minimize the numerator of the fraction of (3).

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.2, March 2015

34

Based on Lemma 1, the numerator of (3) can be rearranged as follows:

 222)(
1

 ccnf
i

i (19)

Based on lemma 3, we have ,1ic 21 i . Therefore, (19) can be written in a simpler
form as follows:

22)(1 cnf . (20)

If n+ω is even, then based on (16) edge tenacity will be calculated as follows:

.
4

1
88

63
8

22244

2

))(2(
4
1)1(2

2
2

2
),(

2222

nnnnnnnn

nnnn

nn

KT ne

(21)

We are looking for the proper value of ω to minimize),(ne KT . We note in (21) that the value

of nn 63 2 is positive for all value of n where n>1, so by increasing the value of ω,),(ne KT

will decrease. Therefore,),(ne KT will be minimal where ω achieves its maximum value. It
should be noted that the maximum value of ω is n. Therefore, the edge-tenacity is as follows:

 .
2

12
),(min)(

n

n

n

KTKT nene

 (22)

If n+ω is odd, based on (16) the edge-tenacity will be calculated as follows:

.
488

143
8

1244

2

)1)(1(
4
1)1(2

2
1

2
),(

2222 nnnnnnn

nnnn

nn

KT ne

(23)

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.2, March 2015

35

We are looking for the proper value of ω to minimize),(ne KT . We note in (23) that the value

of 143 2 nn is positive for all value of n where n>1, so, by increasing the value of ω,
),(ne KT will decrease. Therefore,),(ne KT will be minimal where ω achieves its maximum

value. It should be noted that the maximum value of ω is n. By considering ω=n, the value of ω+n

will be even and we can use the result value of (22) which is
2

1n
.

3. CONCLUSION

In this paper, edge-tenacities of two classes of graphs are calculated. For calculating the edge
tenacity of these classes, first the function in conventional edge-tenacity formula, which is
supposed to be minimized, is calculated for constant number of components. Second a function
with respect to the number of components and the size of components. It is shown that the size of
components is a constant value and the above function may be considered as a one-variable
function. This variable is just the number of components. Finding minimum of this one-variable
function is well known. Our approach may be useful for calculation of tenacity and toughness in
various classes of graphs.

REFERENCES

[1] D. Moazzami, B. Salehian, On the Edge-Tenacity of Graphs, International Mathematical Forum, 3,

(2008), no. 19, 929 – 936.
[2] M.B. Cozzens, D. Moazzami, S. Stueckle, The tenacity of the Harary Graphs, J. Combin. Math.

Combin. Comput. 16 (1994), 33-56.
[3] M.B. Cozzens, D. Moazzami, S. Stueckle, The tenacity of a graph, Graph Theory, Combinatorics, and

Algorithms (Yousef Alavi and Allen Schwenkeds.) Wiley, New York, (1995), 1111-1112.
[4] D. Moazzami, Vulnerability in Graphs - a Comparative Survey, J. Combin. Math. Combin. Comput.

30, (1999), 23-31.
[5] B. Piazza, F. Roberts, S. Stueckle, Edge-tenacious networks, Networks 25, (1995), no. 1, 7-17.
[6] B. Piazza, S. Stueckle, A lower bound for edge-tenacity, Proceedings of the thirtieth Southeastern

International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999)
Congr. Numer. 137, (1999), 193-196.

[7] K. S. Baggas, L. W. Beineke,W.D. Goddard, M. J. Lipman and R. E. Pippert, a survey of integrity,
Discrete Applied Math. 37/38, 1992, 13-28.

[8] W. D. Goddard and Henda C. Swart, On the toughness of a graph, Quaestiones Mathematicae 13
(1990), 217-232.

[9] C. A. Barefoot, R. Entringer and H. Swart, Vulnerability in graphs - A comparative survey, J.
Combin. Math. Combin. Comput. 1, 1987, 13-22.

Authors

Abolfazl Javan:

He received his B.Sc. in Software Engineering from Ferdowsi University of Mashhad, Mashhad, Iran, and
M.Sc. degree in Algorithms and Computation from University of Tehran, Tehran, Iran. He is currently a
research assistant at University of Tehran. His research interests include Graphs Theory, Randomized
Algorithms, Approximation Algorithms, and Bioinformatics.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.2, March 2015

36

Mina Akhavan:

She received her B.Sc. in Software Engineering from Shahid Beheshti University, Tehran, Iran, and M.Sc.
degree in Algorithms and Computation from University of Tehran, Tehran, Iran. Her research interests
include Graphs Theory, Cloud Computing, and Bioinformatics.

Ali Moeini:

He received his Ph.D. in Nonlinear Systems at the University of Sussex, UK, in 1997. He is an Associate
Professor of Electrical & Computer Engineering at Faculty of Engineering Science, School of Engineering,
the University of Tehran, and ad joint Professor at Department of Information Technology Management,
Faculty of Management, the University of Tehran in Iran. His research interests include Formal Methods in
Knowledge and Software Engineering and Knowledge Management, Soft computing Methods,
Randomized Algorithms, Approximation Algorithms, and Bioinformatics. He has published many papers
in Journals and Conferences on the above mentioned topics.

Dara Moazzami:

He is a theoretical computer scientist, Professor of Mathematics at University of Tehran. He received a
PhD in Applied Mathematics from the University of Northeastern- Boston MA. U.S.A. in 1992, and a B.Sc.
in Pure Mathematics in 1976, and M.Sc. in Applied Mathematics in 1978, from University of Quebec–
Montreal Canada. He has been on the faculty of University of Tehran since 1993, Deputy of Undergraduate
and Graduate studies, Department of Engineering Basic Science in 2006-2008, and Chairman of
Department of Engineering Science, 2009-present. He is Editor-in-Chief Journal of Algorithms and
Computation. His research area is in algorithms and complexity theory, specifically Vulnerability in
Networks and tenacity parameter.

