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ABSTRACT 
 
It is well known that the tenacity is a proper measure for studying vulnerability and reliability in graphs. 
Here, a modified edge-tenacity of a graph is introduced based on the classical definition of tenacity. 
Properties and bounds for this measure are introduced; meanwhile edge-tenacity is calculated for cycle 
graphs and also for complete graphs. 
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1. INTRODUCTION 
 
Since that network components may be destroyed, it is necessary to study networks vulnerability. 
So far various criteria have been presented to measure the vulnerability and reliability of 
networks [9]. All measures have been based on that how the loss of part of the graph (vertices or 
edges) will affect the graph structure in the worst case. For example, vertex-connectivity is the 
minimum number of vertices whose removal disconnects the graph and edge-connectivity is the 
smallest number of edges whose removal disconnects the graph. Integrity [7] and Toughness [8] 
is two other measures for calculating network vulnerability. 
 
For the first time graph tenacity is studied by Cozzens, Moazzami and Stueckle [2, 3]. Cozzens et 
al. introduced two measures of network vulnerability. One of them is the tenacity (T(G)) that is 
introduced for studying vertex vulnerability. The other is the measure that is called mix-tenacity 
by Moazzami and has been used for studying edge vulnerability. In [4] Moazzami studied 
integrity, connectivity, toughness and tenacity in some graphs. His results showed that tenacity is 
a better measure for studying vulnerability and reliability in the most graphs.  
The vertex tenacity of a graph called Tv(G) is defined as:  

 

Vertex Tenacity:  }
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where A is a subset V(G) the set of all vertices of the graph G, τ(G − A) is the number of vertices 
in the largest component of (G − A) and ω(G − A) is the number of components of (G − A). Also 
mix-tenacity is defined as: 
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Mixed Tenacity:  }
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where A is a subset of E(G), the set of all edges of the graph G, τ(G − A) is the number of 
vertices in the largest component of G-A and ω(G − A) is the number of components of (G − A). 
In [5, 6] Piazza et al. used (2) as edge-tenacity but this vulnerability measure is the combination 
of edges subset ( )(GEA ) and the number of vertices in the largest component (τ (G − A)). It 
is visible that in Tm (Mix-tenacity) the number of removed edges is added to the number of 
vertices in a largest component of the remaining graph. In this definition both edges and vertices 
are involved which is not rational. To eliminate this weakness, Moazzami and Salehian [1] 
presented a new measure and named it edge-tenacity that in new one just edges are involved. 
Edge-tenacity is defined as:  
 

Edge Tenacity:  }
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where A is a subset of E(G), the set of all edges of the graph G, τ(G − A) is the number of edges 
in the largest component of (G − A) and ω(G − A)  is the number of components of (G − A). 
 
2. EDGE-TENACITY OF SOME SPECIAL GRAPHS 
 
Here, we calculate precisely the edge-tenacity for complete graphs and cycle graphs based o n (3).   
 
Theorem 1: If Cn be the cycle graph with n vertices, then 

. 
Proof: Suppose that the number of edges and vertices in Cn are |E|=m and |V|=n respectively. We 
know that the number of edges and vertices in Cn are equal (m=n). Also it can be easily 
understood that with removing ω edges, (ω >0), ω components remain in the graph, where ω is a 
constant. Based on (3) to determine the minimum value of Te, the numerator of the fraction ω + 
τ(G − ω) must become minimum. Since τ(G − ω) is the number of edges in the largest component 
then for getting the minimum value of Te, it is necessary to distribute |E| − ω edges between ω 
components equally. Therefore Te is as: 
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Since |E|=m is constant, it needs that ω changes between 1 to m. Based on (4) one easily conclude 
that in this range, the minimum value of Te will achieve when ω is maximum, namely n (m=n). 
Therefore, Te is calculated as:  
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Theorem 2: If Kn is a complete graph with n vertices, then  
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For calculation of the edge-tenacity in a complete graph, we first prove some lemmas and then 
edge-tenacity is calculated.  
 
Lemma 1: The edge-tenacity for the complete graph Kn is calculated in the case that the 
generated components after removing edges are all complete subgarphs. 
 
Proof: The proof is based on contradiction. Suppose that the edge-tenacity for the complete graph 
is calculated in the case that at least one of the generated components is not a complete subgraph. 
Therefore, this component has at least one edge less than the complete graph. By adding this edge 
to the component if the component is the largest component of the graph, the number of removed 
edges will be one less and the number of edges of the largest component will be one more that 
finally does not have any effect on obtaining the edge-tenacity. Also, by adding the removed edge 
to the component if the component is not the largest one in the graph, the number of removed 
edges is decreased by one. It means the new value of edge-tenacity is less than the assumed value 
which contradicts with the assumption of the theorem. Therefore, we can conclude that in order to 
calculate the edge-tenacity of a complete graph, all generated components of it, after removing 
edges, can be considered complete. 
 
Lemma 2: Assume that it is supposed to distribute n vertices between ω complete components. 
The ith component has ci vertices so that  
 

  nccc ,...0 21  (7) 
  

Where ci is the number of allocated vertices to ith component that 1≤i≤ ω. The maximum value of 
the total number of edges for all complete components which can be stated by the following 
equation  
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Occurs when the following conditions are satisfied: 

1,11,1    ncici  (9) 
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 (Note that 


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2
ic  is the number of edges of ith complete component and therefore (8) is the total 

number of edges for all complete components) 
Proof: The proof is based on contradiction. Suppose that there exists an integer called k which 
makes the value in expression (8) maximum such that ck>1, k< ω. 
 
It is known that  
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If ck>1 then due to (7) cω>1 and in consequence we have 

0)1)(1(  kcc   (11) 
 

By inserting the above in (10) we have 
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Rearranging (8) using (12) yields 
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The right side of (13) is the total number of edges for all complete components in the case that 
pick (ck−1) vertices from kth component and place them to ωth component. Therefore, the number 

of edges of kth component will be 






2
1  and the number of edges of ωth component will be 



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2
1 cc . In other word, picking (ck−1) vertices from kth component and placing them to ωth 

component makes (8) greater.  So (13) contradicts with the assumption that (8) reaches to its 
maximum value with the above k. Finally, it can be concluded that the maximum value of (8) 
occurs when the condition (9) is satisfied. 
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Lemma 3: Assume that it is supposed to distribute n vertices between ω complete components.  
The ith component has ci vertices so that  
 

  nccc ,...0 21  (14) 
  

Where ci is the number of allocated vertices to ith component that 1≤i≤ ω. 
 
Therefore the minimum value of (15) 
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Proof: Rearranging (15) yields 
 

,22222
1

11












































 




i

i

i

i cnccn  (17) 

Where n is constant. To minimize (17), the value of 
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Lemma 3, this occurs when vertices are placed based on the following arrangement. 
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








1

1 2


i

ic , cω-1 should be maximum. It is assumed that n and ω are 

constants. So, cω, which must satisfy (14), should be minimal. Therefore, each of the ,1ic  

,21  i  must take one vertex and the remaining vertices distribute almost equally between 
cω-1 and cω. If n+ω is even, then the number of remaining vertices namely n−ω+2 is even too. 
Because (n+ω) + (n−ω+2) = 2n+2 is even. In this case, cω-1 and cω should take the same value. If 
n+ω is odd, then the value of cω should be one more than cω-1. 

Now we return to the proof of Theorem 2. 
 
Proof:  First, it is assumed that ω be the number of generated components. To minimize the edge-
tenacity with respect to ω, it is enough to minimize the numerator of the fraction of (3). 
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Based on Lemma 1, the numerator of (3) can be rearranged as follows:   
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Based on lemma 3, we have ,1ic  21  i .   Therefore, (19) can be written in a simpler 
form as follows: 
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If n+ω is even, then based on (16) edge tenacity will be calculated as follows: 
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We are looking for the proper value of ω to minimize ),( ne KT . We note in (21) that the value 

of nn 63 2   is positive for all value of n where n>1, so by increasing the value of ω, ),( ne KT  

will decrease. Therefore, ),( ne KT  will be minimal where ω achieves its maximum value. It 
should be noted that the maximum value of ω is n. Therefore, the edge-tenacity is as follows:  
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If n+ω is odd, based on (16) the edge-tenacity will be calculated as follows: 
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We are looking for the proper value of ω to minimize ),( ne KT . We note in (23) that the value 

of 143 2  nn  is positive for all value of n where n>1, so, by increasing the value of ω, 
),( ne KT  will decrease. Therefore, ),( ne KT  will be minimal where ω achieves its maximum 

value. It should be noted that the maximum value of ω is n. By considering ω=n, the value of ω+n 

will be even and we can use the result value of (22) which is
2

1n
.  

3. CONCLUSION 
 
In this paper, edge-tenacities of two classes of graphs are calculated. For calculating the edge 
tenacity of these classes, first the function in conventional edge-tenacity formula, which is 
supposed to be minimized, is calculated for constant number of components. Second a function 
with respect to the number of components and the size of components. It is shown that the size of 
components is a constant value and the above function may be considered as a one-variable 
function. This variable is just the number of components. Finding minimum of this one-variable 
function is well known. Our approach may be useful for calculation of tenacity and toughness in 
various classes of graphs. 
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