
International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

DOI:10.5121/ijfcst.2015.5403 21

A STATISTICAL COMPARATIVE STUDY OF

SOME SORTING ALGORITHMS

Anchala Kumari

1
, Niraj Kumar Singh

2*
 and Soubhik Chakraborty

3

1
Department of Statistics, Patna University, Patna

2
Department of Computer Science & Engineering, BIT Mesra, Ranchi

3
Department of Mathematics, BIT Mesra, Ranchi

ABSTRACT

This research paper is a statistical comparative study of a few average case asymptotically optimal sorting

algorithms namely, Quick sort, Heap sort and K- sort. The three sorting algorithms all with the same

average case complexity have been compared by obtaining the corresponding statistical bounds while

subjecting these procedures over the randomly generated data from some standard discrete and continuous

probability distributions such as Binomial distribution, Uniform discrete and continuous distribution and

Poisson distribution. The statistical analysis is well supplemented by the parameterized complexity

analysis.

KEYWORDS

Parameterized complexity, Statistical bound, Empirical-O, Computer experiment.

1. INTRODUCTION

Quick sort and Heap sort are the two standard sorting techniques used in literature for sorting

large data sets. These two methods exhibit the very same average case complexity of O(Nlog2N),

where N is the size of input to be sorted. Quick sort, possibly, is the best choice for sorting

random data. The sequential access nature of this algorithm keeps the associated constant terms

small and hence resulting in an efficient choice among the algorithms with similar asymptotic

class. The worst case complexity of quick sort is that of O(N
2
) while the heap sort in worst case

exhibit the same (Nlog2N) complexity. The ϴ(Nlog2N) tight complexity of heap sort gives it an

edge over much used quick sort for use in stringent real time systems. New-sort, an improved

version of Quick sort which introduced by Sundararajan and Chakarborty [1] also confirms to

the same average and worst case complexity as that of Quick sort ,i.e., O(Nlog2N) and O(N
2
)

respectively. But this New sort technique uses an auxiliary array, increasing the space complexity

thereby. A further improvement over the New sort was made by removing the concept of

auxiliary array from it and this sorting algorithm was named as K-sort [2]. Interestingly, for

typical inputs, on average the K-sort also consumes O(Nlog2N) time complexity. In a recent

research paper Singh et al. [3] explores the quick sort algorithm in detail, where it discusses

various interesting patterns obtained for runtime complexity data.

In this paper the three sorting algorithms all with the same average case complexity have been

compared by obtaining the corresponding statistical bounds while subjecting these procedures

over the randomly generated data from some standard discrete and continuous probability

distributions such as Binomial distribution, Uniform discrete and continuous distribution and

Poisson distribution.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

22

ASYMPTOTIC ANALYSIS

Asymptotic analysis of Quick sort: The average and the best case recurrence of quick sort is T(N)

= 2T(N/2) + ϴ(N), T(1)=0. This upon solving yields a running time of O(Nlog2N). The worst

case recurrence is T(N) = T(N-1) + ϴ(N), T(1)=0, which results in O(N
2
) complexity of quick sort

algorithm.

Asymptotic analysis of Heap sort: The best and worst case complexity of heap sort belong to

ϴ(Nlog2N) complexity.

Asymptotic analysis of K-sort: Due to its peculiar similarity the asymptotic time complexities of

K-sort is similar to that of quick sort.

EMPERICAL-O ANALYSIS

Empirical-O is an empirical estimate of the statistical bound over a finite range, obtained by

supplying numerical values to the weights which emerge from computer experiment. A computer

experiment being defined as a series of runs of a code for various inputs and is called

deterministic if it gives identical outputs if the code is re run for the same input.

Statistical bound (non probabilistic): If Wijis the weight of (a computing) operation of type i in

the j
th repetition (generally time is taken as a weight) and y is a “stochastic realization of the

deterministic T= ∑1.Wij where we count one for each operation repetition irrespective of the type,

the statistical bound of the algorithm is the asymptotic least upper bound of y expressed as a

function of N, N being the algorithm’s input size. T is realised for a fixed input while y is

expressed for a fixed size of the input. It is important to know y becomes stochastic for those

algorithms where fixing size does not fix all the computing operations. Sorting algorithm fall in

this category

Now we perform the empirical analysis of the results obtained by applying the specified

algorithms over the input data generated from the probability distributions mentioned earlier. The

codes were written in Dev C++ 5.8.2 and analysis was performed using Minitab statistical

Package.

The response (CPU time to run the code), the mean time in seconds is given in the tables 1-4 and

relative performance plots are presented in figures 1-4. Average case analysis is performed

directly on program run time to estimate the weight based statistical bound over a finite range by

running computer experiments [4][5]. This estimate is called empirical-O[6]][7]. Time of an

operation is taken as weight. Weighing permits collective consideration of all operations into a

conceptual bound which we call a statistical bound in order to distinguish it from the count based

mathematical bounds that are operation specific.

Sample size: The various inputs vary from a size of 1-10 lac which may be considered as

reasonably large for practical data set.

2. RELATIVE PERFORMANCE ANALYSIS OF DIFFERENT

ALGORITHMS

2.1 Discrete Uniform Distribution

Discrete Uniform distribution is characterised by single parameter k. In this experiment k has

been fixed at 1000.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

23

Table 1. Data for discrete uniform distribution

N Heap sort

(HS)

K- Sort

(KS)

Quick Sort

(QS)

100000 .0528 .0526 .03040

200000 .0998 .1842 .0966

300000 .1778 .4032 .1904

400000 .2436 .6340 .3096

500000 .2878 .9424 .4750

600000 .3472 1.3376 .6594

700000 .4028 1.775 .860

800000 .4622 2.886 1.092

900000 .5216 2.9168 1.301

1000000 .5828 3.5912 1.744

Some interesting results are seemed to emerge from the above table. For N< 200000, quick sort

gives better performance as heap sort compared to other two algorithms but for N>=30000, the

heap sort outperforms the quick sort. The reason for ill performance of Quick sort may is due to

increase in number of ties in data set as N increases. As for as the K-sort is considered it gives

the worst performance at this particular value of k.

10000008000006000004000002000000

4

3

2

1

0

N

Y
-D

a
ta

H S

K S

Q S

V ar iab le

R e la tiv e pe r for m a nce for d is c r e te unifor m dis tr ibution K = 1 0 0 0

Figure 1. Relative plots of quick heap and K-sort algorithms (k=1000)

For Discrete Uniform inputs in average case Quick sort, and K-Sort exhibit a time complexity of

Oemp(N
2
) whereas that of heap sort it is Oemp(Nlog2N) [2].

2.2 Binomial Distribution

The Binomial distribution has two parameters m and p, m being the number of independent

Bernoulli trials and p the probability of success in each trial. The mean time given in table 2 was

obtained by varying N between 100000 to 1000000 and fixing m and p at 1000 and 0.5

respectively and making several runs for the same input.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

24

Table 2. Data for Binomial distribution

N Heap sort

(HS)

K-sort

(KS)

Quick

sort

(QS)

100000 .4998 .6096 .2872

200000 1.0450 4.0198 1.1166

300000 1.6344 5.3716 2.46360

400000 2.24000 9.9072 4.3850

500000 2.8534 15.02379 6.8992

600000 3.4602 22.8832 9.8526

700000 4.0792 30.51688 13.5338

800000 4.74800 41.0869 17.66879

900000 5.3766 49.628720 22.0784

1000000 5.9798 62.4471 22.2676

1 0 0 0 0 08 0 0 0 06 0 0 0 04 0 0 0 02 0 0 0 00

7 0

6 0

5 0

4 0

3 0

2 0

1 0

0

N

Y
-D

a
ta

H S

K S

Q S

V ar ia b le

R e la t i v e p e r f o r m a n c e p l o t f o r B in o m i a l in p u t

Figure 2. Relative plots of quick heap and K-sort algorithms (m=1000 and p=0.5)

The input data table (2) and relative performance plot (figure 2) supports the fact that on the

average K-sort consumes more time as compared to other two algorithms for sorting array of

same size. However for Binomial inputs quick sort and K-sort both confirms to Oemp(N
2
), whereas

heap sort has O(Nlog2N) complexity.

2.3 Poisson Distribution

The Poisson distribution depends on the parameter λ. Lambda (which is both the mean and the

variance) should not be large as this is the distribution of rare events. While performing the

empirical analysis with Poisson inputs, its parameter, λ is fixed at 5.0

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

25

Table 3. Data for Poisson Input

N Heap sort

(HS)

K-sort

(KS)

Quick

sort

(QS)

20000 .015 .1778 .0964

40000 .019 .7158 .3190

60000 .0342 1.7450 .7250

80000 .047 2.8082 1.2696

100000 .0636 4.5356 1.9696

120000 .0716 6.320 2.8502

140000 .0818 8.5972 3.8226

160000 .094 11.2604 4.979

18000 .110 14.736 6.3406

200000 .125 18.0549 7.8044

2 0 0 0 0 01 5 0 0 0 01 0 0 0 0 05 0 0 0 00

2 0

1 5

1 0

5

0

N

Y
-D

a
ta

H S

K S

Q S

V a r ia b le

R e l a t i v e P e r f o r m a n c e p l o t f o r P o i s s o n i n p u t

Figure 3. Relative plots of quick heap and K-sort algorithms (λ=5.0)

For Poisson inputs, heap sort gives the good performance as compared to other two algorithms.

Quick sort and K-sort both have Oemp(N
2
) complexity whereas if we have a look on the three

graph (figure 3), it is obvious that heap sort again confirms to Oemp(Nlog2N) complexity,

2.4 Uniform Continuous Distribution

Table 4 gives the mean execution time for the data simulated from uniform continuous

distribution [0, θ].

Table 4. Data for Uniform Continuous Distribution

N Heap sort

(HS)

K-sort

(KS)

Quick

sort

(QS)

100000 .055 .0310 .0340

200000 .11277 .0748 .062

300000 .1780 .1092 .0872

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

26

400000 .2400 .1468 .1064

500000 .3150 .2002 .1312

600000 .3842 .2624 .159

700000 .4533 .3092 .1908

800000 .5188 .3672 .219

900000 .902 .425 .2534

10000 1.0154 .4750 .2842

10000008000006000004000002000000

1.0

0.8

0.6

0.4

0.2

0.0

n

Y
-D

a
ta

HS

KS

Q S

Variab le

R elative performance plot for Uniform Continuous dis tr ibution

Figure 4. Relative plots of quick heap and K-sort algorithms [0-1]

Here the scenario has just changed. Quick sort outperforms the two algorithms in its performance.

The K-sort for all values of N in selected range out performance the heap algorithm . However

all the three algorithms suggest Oemp(Nlog2N) complexity.

3. STATISTICAL ANALYSIS OF DIFFERENT ALGORITHMS FOR

DISCRETE DISTRIBUTIONS

In this section we test the hypothesis whether the average performance of the algorithms for

different input distributions is same or not. For this we apply two way analysis of variance. A

value of p = 0.358 greater than 0.05 as shown in table 5, is indicative of the fact that as for as

their average performance is concerned there is no reason to differentiate between the three.

Table 5. Results of Two Way ANOVA

Source DF SS MS F P

PRODIS 3 163.354 54.4514 2.52 0.155

SORTALG 2 52.955 26.4776 1.23 0.358

Error 6 129.602 21.6003

Total 11345.911

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

27

3.1 Parametric complexity

Parametric complexity is one of the important criterions for selection of an algorithm among the

several algorithms, since besides the size of input, parameters of input distribution has direct

effect on execution time of an algorithm. We have examined the parameterized complexity of the

three algorithms for binomial inputs, the reason being that distribution has two parameters . A 32

factorial experiment with three repeated set of data elements at same combination of level of

factors m and p has been employed. The results given in table 6 below reveal some interesting

findings:

Table 6. Parameterized Complexity of heap sort, k-sort and quick sort

sources Heap

sort

(HS)

 K-sort

(KS)

 Quick

sort

(QS)

 df F P F P F P

M 2 0.13 .876 3.85 .04 1.11 .351

P 2 0.15 .866 37.37 0.00 26.1

8

.000

MP 4 0.18 .948 1.62 .213 0.31 .867

The F and P values revealed that in case of Heap Sort the two parameters neither singularly nor

jointly has any effect on sorting time while in case of K-sort though both the factors have

independent effects on the complexity , probability of success being highly significant. While

applying the quick sort algorithm, the number of trials (m) shows highly non significant effect

while the probability of success p delivers significantly high effect on complexity .Thus the

proper selection of input parameters can have rewarding effect on reducing the complexity of an

algorithm.. For different values of p, the average execution time is given in the table 7 below

Table 7. optimal value of p m=5000, n=50000

P K-sort Quick sort

0.1 .188 .056

0.2 .144 .047

0.3 .126 .040

0.4 .127 .044

0.5 .115 .0438

06 .117 .0566

0.7 .125 .063

o.8 .1406 ..072

0.9 .183 ..072

Here we find that in both the cases initially the execution time decreases as the value of p is

increased, at p=.5 , execution time is minimum and then again it goes on increasing. Thus the

optimal value of p is .5. But as for the optimal value of m is concerned in case of k sort, as shown

in the following table 8, the execution time decreases with increase in the value of m Thus in

this case a high value of m is preferable.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

28

Table 8. optimal value of m for K sort (p=.5, n=50000)

M Ksort

2000 .174

3000 ,1456

4000 .1275

5000 .0782

6000 .0704

7000 .0666

8000 .0644

9000 .061

10000 .056

4. CONCLUSIONS

The three sorting algorithms, heap sort, K-sort and quick sort though theoretically deliberating to

same complexity O(Nlog2N) has been supported by the statistical analysis in section 3. We have

no evidence against rejection of the hypothesis of homogeneity of algorithms as far as their

average performance is considered. But unfortunately in worst case quick sort and K-sorts have

complexity O(N
2
) than heap sort which exhibits a complexity of O(Nlog2N) since we have the

relation that O(Nlog2N)<O(N
2
) .

However as far as Empirical-O estimates are considered , quick sort for N less than 200000 gives

better performance for some discrete distributions such as Binomial and Uniform distribution

while for N>300000 heap sort is best, K-sort for these distributions does not work good. But

sorting an array generated randomly (not generated from any standard probability distribution, K-

sort works good. It can sort an array of size never greater than 7000000 in less time than heap sort

[2].

For continuous uniform distribution, quick sort gives the good performance as compared to other

two. This result is quite expected as in case of a continuous distribution the probability of getting

similar valued elements (ties) is theoretically zero. It is well known through various results [8]

that quick sort behaves exceptionally good in such cases. Whereas in the very same scenario heap

sort is expected to perform relatively poor (however the time complexity of heap sort remains of

the order of Nlog2N) [9].

The different behaviour of the algorithms to input data can be supplemented by the parameterised

complexity analysis since the true potential of an algorithm is related to parameters of the input

distribution. As far as the parameterised complexity of heap sort is considered, it is in favour of

its worst case complexity which is less than the other two algorithms. The reason being obvious

as execution time does not depend on the binomial parameters. But in case of quick sort the

parameter p has highly significant effect on execution time. Though the two parameters m and p

have independent effects on complexity in case of K sort, but we find that parameter m has a

very little effect where as p has highly significant . In both the cases of K sort and Quick sort, the

complexity is minimum at p=.5 but a high value of p is preferable to reduce the complexity while

using the K-sort algorithm. Thus proper selection of input parameters can have rewarding effect

on reducing complexity of an algorithm.

International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.5, No.4, July 2015

29

REFERENCES

[1] Sundararajan, KK & Chakraborty S, (2007) "A New sorting algorithm" Journal of Applied

Ma1thematics and Computation 188, pp 1037-1041.

[2] Sundararajan, KK, Pal, M, Chakarborty ,S., & Mahanti, NC, (2013) "K-Sort: A New Sorting

Algorithm that beats Heap Sort for n ≤ 70 lakhs".

[3] Singh, N K, Chakraborty, S, and Mallick, DK, (2014) "A Statistical Peek into Average Case

Complexity", IJEDPO, Vol. 4, No 2, Int. J. on Recent Trends in Engineering and Technology 8(1),

64-67.

[4] Fang, KT, Li, R, and Sudjianto, (2000) Design and Modelling of computer Experiments, Taylor &

Francis Group, Boca Raton.

[5] Sacks, J, Welch,W, Mitchel, T, and Wynn, (1989) "Design and Analysis of Computer Experiments",

Statistical Science 4.

[6] Chakraborty , S, & Sourabh, SK, (2010) A Computer Oriented Approach to Algorithmic Complexity,

Lambert Academic Publishing.

[7] Chakraborty, S, Modi, N and Panigrahi, S, (2009) "Will the weight based Statistical Bounds

Revolutionize the It?", International Journal of Computational Cognition 7(3).

[8] Singh, NK & Chakraborty, S, (2012) "Smart Sort: A Fast, Efficient and Robust Sorting Algorithm",

IJACMS, ISSN 2230-9624, Vol 3, Issue 4, pp 487-493.

[9] Sourabh, SK ,and Chakraborty, S, (2009) "Empirical Study on the Robustness of Average Complexity

and Parameterized Complexity Measure for Heap sort Algorithm", International Journal of

Computational Cognition.Vol.7, No.4.

Authors

Anchala Kumari is a Professor in the department of statistics, Patna University, India. Her

research area includes: Operations research, Design of Experiments and Computer

Programming.

Niraj Kumar Singh is a Teaching Cum Research Fellow at department of CSE, BIT

Mesra, India. His research interest includes: Design and Analysis of Algorithms and

Algorithmic Analysis through Statistical bounds.

Soubhik Chakraborty is a Professor in the department of Mathematics, BIT Mesra, India.

His research interest includes: Music Analysis, Algorithmic Complexity and Statistical

Computing.

