
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

DOI:10.5121/ijfcst.2017.7602 11

A COMPARATIVE ANALYSIS ON SOFTWARE

ARCHITECTURE STYLES

Feidu Akmel
1
, Ermiyas Birhanu

2
, Behar Siraj

3
, Seifedin Shifa

4

Lecturer, Department of Computer Science, Department of Software Engineering,

Wolkite University, Wolkite, Ethiopia

Assistant Lecturer, Department of Information system,

Wolkite University, Wolkite, Ethiopia

ABSTRACT

Software architecture is the structural solution that achieves the overall technical and operational

requirements for software developments. Software engineers applied software architectures for their

software system developments; however, they worry the basic benchmarks in order to select software

architecture styles, possible components, integration methods (connectors) and the exact application of

each style.

The objective of this research work was a comparative analysis of software architecture styles by its

weakness and benefits in order to select by the programmer during their design time. Finally, in this study,

the researcher has been identified architectural styles, weakness, and Strength and application areas with

its component, connector and Interface for the selected architectural styles.

KEYWORDS

Architecture Styles, Components, Connectors, Interface

1. INTRODUCTION

Today the business world is very dynamic and the organization often change their business

processes to be competent in the market. These businesses supported their through software

systems. Moreover, size and complexity of software systems increases, Software Architecture is

emerging as an important research area in software engineering [1]. Software architecture is the

process of defining a structured solution that meets all of the technical and operational

requirements, while optimizing common quality attributes such as reusability performance,

security, and manageability [2][3]. Software architects use a number of commonly recognized

styles to develop the architecture of a System [3, 4]. Software architecture styles are an abstract

framework developed for a family of systems to have general solutions to common problems that

arise in the software development process. It is accountable to offer a lexicon of connectors and

components with principles on how they can be combined, improve partitioning and allow the

reuse of design by giving solutions to frequently occurring problems and describe a particular

way to configure a collection of components which has a module with well-defined interfaces and

re-usable connectors of communication link between modules [5].

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

12

This research presents to evaluate five architectural styles in order to minimize the confusion of

the designers and programmer while selecting appropriate architecture style for their specific

need. The researchers selected thus five commonly used styles that are applied for various types

of software application areas in real world scenarios as we shown Table 1 .These software

architecture styles are: Message Bus Architecture Style, Component-Based Architecture Style,

Layered Architecture Style, Object-Oriented Architecture Style and Service Oriented Architecture

Style (SOA)

2. STATEMENT OF PROBLEMS

According to, Sommerville definition regarding to Software Engineering [6] to develop, Manage

and evolving software systems Software Engineering gives an emphasize on methods, theories

and tools. Software Engineering has different models and each model has its own lifecycle

mainly which includes requirement analysis, Design (System and Object), Implementation,

Testing, Delivery and maintenance. During design phase, we have considered an issue regarding

to software architecture, which are high-level design stage.

The main idea behind software architecture is to decompose the system in to a group of different

components and then develop components and related connectors ,to achieve this decomposition

and selection of an architecture styles [7]. An architecture style is defined by the component sets

and the interactive rules between them. Most common known example of architectural style types

are Component-based, Layered, Client -Server, Message Bus and Service Oriented Architecture

as we shown Table 1.

Anubha et al [8] attempts to discussed the software architecture styles, importance and classifying

it according to its benefits and its application, but they did not consider an emphasize about their

interaction methods and its components.

Most of software engineers worry what are the basic benchmarks in order to select software

architecture styles, possible components, integration methods (connectors) and the exact

application of each style. In this study, we consider the selected architectural style strength and

weakness using its parameters in addition to detail explanations of components, connectors and

application areas.

Thus, the research is attempted to answer the following research questions:

• Which type of connectors and components are applied by software architecture

styles?

• How data is communicated through software architecture styles?

• What are pros and cons we considered for each architectural style?

2.1.General objective

The main objective of this study was comparative analysis of software architecture styles in order

to identify the application areas, advantage, disadvantages and how component of software

system could be composed.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

13

3. RELATIONSHIP BETWEEN ARCHITECTURE STYLES AND DESIGN

PATTERNS

The most common known definition of design pattern was by Christopher Alexander there is a

problem which occurs again and again in a given system and solved by available patterns many

times[9], from this definition we asses four basic elements in design patterns which are patterns

name, solutions, problems and consequences. The concept of design patterns is not about design

of linked list and hash tables, but it also gives an emphasize to complex and domain specific

applications (namely classes and objects). Architectural styles indicate that an established of

design rules that classify the type of connectors and components that is used to applies to

compose a system or subsystem, together with global or local constraints that are executed[10].

The relationship between styles and patterns are discussed in two perspectives, first, architectural

styles can be viewed as kinds of patterns or perhaps more accurately as pattern languages. The

second method that design patterns are associated to styles is that for a specified style there may

exist a set of idiomatic uses of it. According to, Robert T et al view about styles and patterns are

complementary mechanisms for encapsulating designs. Architectural styles are a collection of

building blocks design elements, rules and design whereas patterns is expressing by making with

solutions to lower level programming ways, rather than software system structuring issue[11].

3.1 Software Architecture Styles

Software architecture styles are patterns or an abstract framework developed for a family of

systems to have overall solutions to problems that arise in the software development life cycle

processes. There are set of principles and guidance's to shape or define the components and

connectors that compose a solution and their relations. It determines the vocabulary of

components and connectors that can be used in instances of that style, together with a set of

constraints on how they can be combined. The most crucial benefit is that, they can provide a

common language by being an opportunity for conversations that are technology agnostic because

this helps a higher level of conversations that is inclusive of principles and patterns without

becoming into specifics. Software architectural style is responsible to provide a connectors and

components with rules on how they can be combined, improve partitioning and allow the reuse of

design by giving solutions to frequently occurring problems and describe a particular way to

configure a collection of components which has a module with well-defined interfaces, reusable

and replaceable and connectors of communication link between modules. Each architecture style

defines a system family that includes a set of component types that perform a required function

by the system, semantic constraints which define how components can be integrated to form the

system and a topological layout of the components indicating their run time interrelationships.

There are different kind of architectural styles in software development world and varieties and

categories of styles depend on their focus area, as we showed Table 1 below.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

14

Table 1: Patterns (Category) and Architectural Styles [12]

3.2.Client-Server Architecture Styles

Nowadays most communication like internet through client server architectural style, which

means there is request and response take place. There are mainly three components such as

Client, Server and Medium of communication[8]. Medium of communication between client and

server are File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP) and Hypertext

Transfer Protocol (HTTP)[13].Client Server system has popular models namely 3-tier and n-tire

architectures. From figure 1, we observed that the general layout for client and server architecture

look like.

Figure1: Client Server Architecture frame work [13]

Application Areas

• File Transfer: client server architecture allows the user to store and retrieve their data to

server such as movies, images and music’s.

• Mail Transfer: Which provides the user to communicate with someone who is available

somewhere through their mail using mail transfer protocol (MTP)?

• Web based applications[8]: Client Server architecture is used for internet applications ,

for instance AceProject, Ganttic, Celoxis etc.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

15

Strength:

The basic benefits for using client server architecture are higher security: Since all the data are

stored at server machine we can apply different security mechanisms to enhance its security than

client machines. Centralized data access: any authorized user can able to access and updates

data on the server because the data is available centrally. Simple to maintenance: Roles of a

computing system are distributed among several servers that are recognized to each other through

a medium or network. This ensure that a work stations keep unaware and unaffected by a server

relocation, upgrade or repair [4].

Weakness /Challenges

There are a number of thing that are considered by any organization before they are going to

deploy and use client server architectures[13, 14], which includes : The number of customers

server by the model, It needs skilled peoples ,The server is quite expensive, Security issues ,

Management of applications.

3.3 Component-Based Architecture Style

Component based architecture is an architecture that focuses on decomposing software design

into functional or logical components with their own methods, events and properties. In case of

component based architectural styles no need of an issues like communication protocols and

shared states[12]. The components are loosely coupled and reusable to provide modular programs

that can be tailored to fit any need. A provided interface specifies what a component can provide

to other components in the system. There are three types of components such as user interface

components such as and buttons and grids and helper and utility components that expose a

specific subset of functions used in other components. Other kinds of components are not

frequently accessed, resource intensive and must be activated using the just-in-time (JIT)

approach (common in remote or distributed component scenarios); and queued components

whose method calls may be executed asynchronously using message queuing and store and

forward.

As we have shown on Figure 2 there is five components such as User interface, Notification,

Order Management, Accounting and persistence layer.

Figure 2 : Component based Architecture [8]

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

16

Strength:

The benefit of component based architecture, the use of components that are Ease of deployment,

Reduced Cost, Ease of development, Reusable and Mitigation of Technical complexity[12] as

researcher discussed here:- Ease of deployment: when new well-matched versions become

available, we can replace the current versions without any drawback on the other components or

the products as a whole. Reduced Cost: the use of third party components allows you to reduce

the cost of development and technical support. Ease of development: components implement

well-known interfaces to provide defined functionality, allowing development without impacting

other parts of the system. Reusable: the use of reusable components are to extend applications or

systems. Mitigation of technical complexity: components mitigate complexity through the use

of a component container and its services. Example component services include component

activation, life time management, method queuing and transactions.

Weakness:

The main weakness of component based architectural style discussed here: -Message handling:

needs to be predefined for the components. Possibly it could be a limiting factor. Reliance on

third parties: if your component come from a third party of some sort then you will be at the

mercy for updates and changes to the component. Complexity: while it is designed to reduce

complexity of systems it introduces a different type of complexity in terms of component-to-

component interactions. Testing: can be difficult if the component doesn't come with its own

execution environment. Second system syndrome: depending on how complex the components

themselves are you can end up with a platform within a platform within a platform type problem.

Application Areas

The application area under component based architecture is structured; to create pluggable

applications this architecture will be appropriate. Since whole picture of system is in terms of

components, it results in high maintainability and portability[8].

3.4 Layered Architecture Style

The Layered Architecture style is focused around dividing software functionality into distinct

layers that are interacted and stacked vertically on top of each other. Functionality within each

layer is related by a common role or responsibility. Communication between layers is explicit and

loosely coupled. The main application of layering helps to support great separation of concerns

that in turn, support maintainability and flexibility. [12]. It is dependent on message passing

between layers and clearly defined functional layers. Components for layered architecture are

classified based on its layers namely presentations, business and data access.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

Figure3

Strength:

The main benefit of layered Architecture

view of the system as whole while

roles of individual layers and association

be made about data types, methods and properties or implementation during design as these are

not exposed at layer boundaries.

functionality in each layer is clear.

each layer and ensuring that each layer contains functionality directly related to the task of that

layer will help to maximize cohesion within

dependencies on higher layers potentially allowing them to be reusable in other scenarios.

coupling: communication between layers is based on abstraction and events to provide loose.

Weakness:

Difficulties structuring systems as layered systems. Specifically, restricting communication to

adjacent layers and keeping coupling between layers reduced.

presentation patterns if the user need to

interface functionality or to separate task of designing the UI from the development of the logic

code that drives it.

 Application Areas

According to researchers the current application area within industry are OSI mode

(Networking), telecommunications

phones and Internet services) and Nokia Siemens Networks (telecommunications infrastructure)

[15], generally it applied for both networking and Mobile industries

urnal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

Figure3: Layered Architecture Style

The main benefit of layered Architecture is: -Abstraction: layered architectures abstracts the

view of the system as whole while providing enough detail to recognize the responsibilities

association between them. Encapsulation: no assumption need to

be made about data types, methods and properties or implementation during design as these are

not exposed at layer boundaries. Clearly defined functional layer: the separation between

functionality in each layer is clear. High cohesion: well defined responsibility boundaries for

each layer and ensuring that each layer contains functionality directly related to the task of that

layer will help to maximize cohesion within the layer. Reusable: lowers layers have no

dependencies on higher layers potentially allowing them to be reusable in other scenarios.

communication between layers is based on abstraction and events to provide loose.

Difficulties structuring systems as layered systems. Specifically, restricting communication to

adjacent layers and keeping coupling between layers reduced. It required to consider a various

presentation patterns if the user need to improved testability and simplified maintenance of user

interface functionality or to separate task of designing the UI from the development of the logic

According to researchers the current application area within industry are OSI mode

(Networking), telecommunications domain, comprising architecture documents in Nokia (mobile

phones and Internet services) and Nokia Siemens Networks (telecommunications infrastructure)

generally it applied for both networking and Mobile industries.

urnal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

17

: layered architectures abstracts the

responsibilities and

: no assumption need to

be made about data types, methods and properties or implementation during design as these are

paration between

: well defined responsibility boundaries for

each layer and ensuring that each layer contains functionality directly related to the task of that

: lowers layers have no

dependencies on higher layers potentially allowing them to be reusable in other scenarios. Loose

communication between layers is based on abstraction and events to provide loose.

Difficulties structuring systems as layered systems. Specifically, restricting communication to

It required to consider a various

d simplified maintenance of user

interface functionality or to separate task of designing the UI from the development of the logic

According to researchers the current application area within industry are OSI model

domain, comprising architecture documents in Nokia (mobile

phones and Internet services) and Nokia Siemens Networks (telecommunications infrastructure)

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

18

3.5 Message Bus Architecture Style

Message bus architecture gives detail about the protocols of using a software system that can

accept and send messages using one or more communication channels, so that applications can

interact without needing to know specific details about each other[4]. This style uses common

buss for the interaction between applications which is accomplished by messages, mainly

asynchronously. There are various implementation methods, the most common implementations

of message bus architecture use either a Publish/Subscribe pattern or a messaging router, message

Queuing. Message bus and service oriented styles are under categories of communication, but

Service oriented architecture gives itself very well to utilizing a message bus architecture to

facilitate the subscription of service providers to service requesters[16].

Strength:

The main strength for message bus Architecture are flexibility ,Extensibility, Scalability

[16].Extensibility: Applications with message bus architecture support both adding and

removing from the bus without having an impact on the existing applications. Flexibility: The set

of applications that make up a complex process, or the communication patterns between

applications, can be changed easily to match changes in business or user requirements, simply

through changes to the configuration or parameters that control routing and application

complexity is reduced because each application only needs to know how to communicate with the

bus. Scalability: numerous instances of the identical application can be attached to the bus in

order to touch multiple requirements at the same time.

Weakness:

The drawback of message bus architecture is difficult to modifiability, lower security and

problem of down tolerances[16].

Lower modifiability: changes to the bus interface must maintain backwards compatibility, or

every component that utilizes the bus will have to be updated in order to support the new

interface .Lowered security: a broadcast based message bus offers no privacy without some form

of encryption as messages are delivered indiscriminately to all connected nodes. Lowered down

tolerance: The bus becomes a single point of failure for all communications across the

application. Logic is not necessarily implemented for applications to manage their own messages

while the bus is out of service, which can lead to message loss and failures of data integrity.

Application Areas

A message bus offers the capability to handle message-oriented communications, complex

processing logic, modifications to processing logic, integration with different environments
systems.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

19

Figure 4: Message bus Architecture

3.6 Object Oriented Architecture Style

The basic feature of object-oriented architecture abstract objects that denotes data and the

interaction method is whether functional or procedural [17]. One of the design principle which

divided object based on its responsibilities is called object oriented architecture, for any products

or Applications into individual reusable and self-sufficient objects, each containing the data and

the behavior relevant to the object. Object- oriented design look like an application as sequence of

cooperating objects, instead of a set of routines or procedural instructions[4]. Due to its concepts

and implementations contribute to the getting acceptance of the architecture to expansion

popularity in the world. These major principles are Inheritance: where objects can inherit the

characteristics of other objects. Encapsulation: the internal of an object can be hidden from

others so that only that object can manipulate its own state and variables. Abstraction: breaking

down a system into logical components that can perform some sort of work and communicate

with other objects in meaningful ways. Polymorphism: giving an object multiple forms. The

component for OOP are objects and the communication between this object can be achieved

through sending message or passing parameters from and to objects. The relationship between the

object is depends on the application being developed by the programmer, as shown figure 5.

Figure 5: Object Oriented Architecture [17]

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

20

Strength

Reusability, Testability, Extensibility and highly cohesive are the strength of OOP styles, as they

have the principle of polymorphism, abstraction, encapsulation and polymorphism. Thus, Object

interacts with others, if the method which is available within one object changes there is also

affects the other.

Weakness

The main drawback of object-oriented architecture are service integration and strong coupling

between objects, there is an integration of services into object oriented systems has been made

however, as current business’s market trends has moved towards a greater use of external services

in line with the advancement of telecommunications capabilities expanding more, it is becoming

a common problem in existing object-oriented systems. Strong coupling between super classes

and sub classes, swapping out of super classes can break sub classes.

Application Areas

The application area of OOP is for complex business and application domains such as

telecommunications, distributed medical imaging, and real-time applications

3.7 Service Oriented Architecture Style

Service-oriented architecture (SOA) makes application functionality to be provided as a set of

services, and the creation of applications that make use of software services. It is an architectural

style that supports service orientation. It is a way of thinking in terms of services, service-based

development, and the outcomes of services. In SOA, the basic components are types are service

provider, service users and Service registry. An approach that communicates between each

component in SOA can be implemented differently. During pure web service solution, SOA

protocol is used. However, software Architect wants the simpler approach such as

Representational State Transfer (REST) as a means of communication between SOA components.

There are other alternatives in order to communicate through message passing protocols like

Microsoft MSMQ and IBM WebSphere MQ (previously called MQSeries) [18].

Strength

Domain alignment: Reuse of common services with standard interfaces increases business and

technology opportunities and reduces cost .Abstraction: Services are self-directed and accessed

through a formal contract, which gives loose coupling and abstraction and services can

representation descriptions that allow other applications and services to locate them and

automatically decide the interface. Interoperability: Because the rules and data formats are based

on industry standards, the provider and consumer of the service can be built and deployed on

different platforms. Rationalization: Services can be coarse in order to provide specific

functionality, rather than duplicating the functionality in number of applications, which removes

duplication.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

Figure

Application Area of SOA widely used for constructing large distributed systems.

4. CONCLUSION

Software architecture styles are patterns or an abstract framework developed for a family of

systems to have general solutions to common problems that arise in the software development

process.

In this study, the researcher’s has presented a comparativ

architecture styles using the parameters like implementation architecture ,basic advantages and

drawback of the architectural styles ,interface, component

application areas of five architectural styles namely Component

Layered Architecture Style, Service Oriented Architecture Style, Object

Style and Message Bus Architecture Style. According to

that, software developer should consider these styles in order to select the best architectures styles

that fit with their problem domains based the above parameters.

recommended that for the future we need to give attention to design h

components and connectors in order to communicate each other to design generic architecture

styles that meets various problem domains.

REFERENCES

[1] Guozhen Tan, Xinpeng Li, Jiankun Wu, H. Z. and, and C. Li.

[2] Microsoft. (2013). What is Software Architecture Available:

https://msdn.microsoft.com/en

[3] Mei Hong, Chang Jichuan, and Y. Fuqing, "Software component composition based on ADL and

Middelware," Science in China vol. Series F pp

[4] Microsoft. (2013). Chapter 3: Architectural Patterns and styles Available:

 https://msdn.microsoft.com/en

urnal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

Figure 6: Service Oriented Architecture[18]

SOA widely used for constructing large distributed systems.

Software architecture styles are patterns or an abstract framework developed for a family of

systems to have general solutions to common problems that arise in the software development

In this study, the researcher’s has presented a comparative analysis of various software

using the parameters like implementation architecture ,basic advantages and

drawback of the architectural styles ,interface, component ,integration methods (connectors), and

rchitectural styles namely Component-Based Architecture Style,

Layered Architecture Style, Service Oriented Architecture Style, Object-Oriented Architecture

Style and Message Bus Architecture Style. According to the researchers knowledge recommended

software developer should consider these styles in order to select the best architectures styles

that fit with their problem domains based the above parameters. Moreover, the researchers

for the future we need to give attention to design hybrid of architecture styles,

components and connectors in order to communicate each other to design generic architecture

styles that meets various problem domains.

Guozhen Tan, Xinpeng Li, Jiankun Wu, H. Z. and, and C. Li.

Microsoft. (2013). What is Software Architecture Available:

https://msdn.microsoft.com/en-us/library/ee658098.aspx

Mei Hong, Chang Jichuan, and Y. Fuqing, "Software component composition based on ADL and

Middelware," Science in China vol. Series F pp. 136-151.

Microsoft. (2013). Chapter 3: Architectural Patterns and styles Available:

https://msdn.microsoft.com/en-us/library/ee658117.aspx

urnal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

21

Software architecture styles are patterns or an abstract framework developed for a family of

systems to have general solutions to common problems that arise in the software development

e analysis of various software

using the parameters like implementation architecture ,basic advantages and

egration methods (connectors), and

Based Architecture Style,

Oriented Architecture

the researchers knowledge recommended

software developer should consider these styles in order to select the best architectures styles

Moreover, the researchers

ybrid of architecture styles,

components and connectors in order to communicate each other to design generic architecture

Mei Hong, Chang Jichuan, and Y. Fuqing, "Software component composition based on ADL and

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.7, No.5/6, November 2017

22

[5] D.Garlan and M. Shaw. (1994). An introduction to software Architecture Available:

 http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf

[6] I. Sommerville, Software Engineering. Addison-Wesley Pub. Co, 1996.

[7] C. Hai-Shan, "Survey on the Style and Description of Software Architecture," The 8th International

Conference on Computer Supported Cooperative Work in Design Proceedings, 2003.

[8] Anubha S, Manoj K, and S. A, "A Complete Survey on Software Architectural Styles and Patterns,"

4th International Conference on Eco-friendly Computing and Communication Systems, 2015.

[9] KevinZhang, Design Patterns Elements of Reusable Object-Oriented Software.

[10] Somo S, "Software Architecture: Styles and Representational Schemes " MSc Interdepartmental

Program in System Sciences National Institute of Technology, Rourkela, India,, 2004

[11] Robert T, Andrew K, Ralph M, and D. B., "Architectural Styles, Design Patterns, and " IEEE

Software.

[12] P . U. Chavan, Dr. M. Murugan, and P. P. Chavan, "A Review on Software Architecture Styles with

Layered Robotic Software Architecture," presented at the International Conference on Computing

Communication Control and Automation, 2015.

[13] Haroon S, "Client-Server Model " IOSR Journal of Computer Engineering (IOSR-JCE), vol. 16,

2014,.

[14] S. Tayib, "Title," unpublished|.

[15] Juha S and Varvana M, "Layered Architecture Revisited – Comparison of Research and Practice "

IEEE 2009.

[16] D. Tody. (1998). Message Bus and Distributed Object Technology Available:

 http://adass.org/adass/proceedings/adass97/todyd2.html

[17] M. Boddoohi, "An Evaluation of Software Architectures – Using Aspects " MSc MSc, Information

Systems and Operations Management, University of North Carolina Wilmington, 2010.

[18] Phil B, Rick K, and Paulo M, "Evaluating a Service-Oriented Architecture," Carnegie

MellonUniversity,USA200

