
A study of the Behavior of Floating-Point Errors

Nasrine Damouche

ISAE-SUPAERO, Université de Toulouse,
10 Avenue Edouard Belin, Toulouse, France

Abstract. The dangers of programs performing floating-point computations are well
known. This is due to numerical reliability issues resulting from rounding errors arising
during the computations. In general, these round-off errors are neglected because they are
small. However, they can be accumulated and propagated and lead to faulty execution and
failures. Typically, in critical embedded systems scenario, these faults may cause dramatic
damages (eg. failures of Ariane 5 launch and Patriot Rocket mission). The ufp (unit in the
first place) and ulp (unit in the last place) functions are used to estimate maximum value
of round-off errors. In this paper, the idea consists in studying the behavior of round-off
errors, checking their numerical stability using a set of constraints and ensuring that the
computation results of round-off errors do not become larger when solving constraints
about the ufp and ulp values.

Keywords: Static analysis, floating-point arithmetic, round-off errors, ufp and ulp functions.

1 Introduction

In recent years, the perpetual advances in computer science have resulted in the development of
sophisticated devices and complex software. However, this has also brought additional challenges
to ensure properties of performance and reliability especially in embedded critical systems such
as avionic, automotive and robotic. In particular, the accuracy of numerical computations may
have an important impact on the validity of programs based floating-point arithmetic. By way
of illustration, it seems mandatory to tackle the problems of inaccurate program computation
results or numerical stability issues caused by round-off errors.

Floating-point arithmetic, as specified by the IEEE-754 Standard [2], is widely used for nu-
merical simulations and applied to many industrial domains, such as embedded critical systems
(avionics, robotics, autonomous systems). Floating-point numbers are used to encode real num-
bers. In practice, floating-point numbers are approximation of real numbers. Therefore, this ap-
proximation generates round-off errors and makes the floating-point arithmetic prone to numer-
ical accuracy problems. Depending on the critical level of the application [25,29,30], the approxi-
mation becomes dangerous when accumulated errors cause damages like the failure of the Ariane
5 launch and the Patriot Rocket mission. Asserting the numerical accuracy of floating-point
computations is then a well-known problem with many applications in safety critical systems.

Several techniques have been proposed over the last fifteen years to validate [3,11,13,14,28], to
improve [27] the numerical accuracy of programs, and to avoid failures. Many methods are based
on static analyses of the numerical accuracy of floating-point computations. These methods com-
pute an over-approximation of the worst error that arises during the program execution. Another
family of work improves the accuracy of computations by program transformation [10]. While

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024

DOI : 10.5121/ijpla.2024.14101                                                                                                                                                     1

https://wireilla.com/ijpla/vol14.html
https://doi.org/10.5121/ijpla.2024.14101


these methods compute an over approximation of the worst error arising during the executions of
a program, they operate on final codes, during the verification phase and not at implementation
time.

The main contribution of this paper is to study the behavior of the round-off errors relying on
floating-point computations. Let us precise that detecting accuracy errors in critical embedded
systems is a very difficult task since a small error may lead in catastrophic results. Recall that,
the existing embedded critical systems suffer from divergence caused by their values which cannot
be bounded statically. For this reason, many useful programs see their initial errors grow with
the number of iterations. Our purpose is to ensure that even if the round-off error becomes large,
it can not be greater than the output of the program (see Figure 2 corresponding to the curve
of the while loop example). A key element in their computations is the use of the ufp and ulp
functions. In addition, a set of constraints will be specified and a proof in terms of the behavior
of the round-off errors computations will be highlighted. The idea is to compare the results for
different number of iterations going from 0 up to 100 iterations. This is important to observe the
behavior of our program through the computation of the errors.

The reminder of the article is organized as follows. Section 2 surveys related work. Section 3
introduces the background material and gives some preliminary definitions. Section 4 consists
in the presentation of the problem statement, our motivation to tackle this numerical issue and
details through a running example our purpose and aim. This section also show the method
followed to deduce the constraints set. In Section 5, a proof of correctness of our approach is
presented. Section 6 concludes and outlines future work and the potential application of these
results.

2 Related Work

Over the past decade, several approaches and tools relying on formal methods and numerical
analysis have been proposed. These approaches can be categorized as follows: i) Formal proofs and
proof assistants to guarantee the accuracy of finite-precision computations [4,15,19]. ii) Compile-
time optimization of programs in order to improve the accuracy of the floating-point computation
in function of given ranges for the inputs, without modifying the formats of the numbers [9,27].

Other papers based on static and/or dynamic analysis propose to determine the best floating-
point formats as a function of the expected accuracy on the results. In [11] the authors introduced
Rosa tool. This source-to-source compiler computes the propagation of errors by using a forward
static analysis coupled to a SMT solver. Rosa takes as input real values and error specification and
then compute bounds on the accuracy. If the computed bound satisfies the post-conditions then
the analysis is run again with a smaller format until founding the best format. In this approach, all
the values have the same format. Other static techniques [14,28] could be used to infer the suitable
floating-point formats from the forward error propagation. In [22] the authors introduced a new
static analyzer that takes as input a set of functional oating-point expressions and generates the
round-o error estimations for each function in the program. Another method has been proposed
by [6] to allocate a precision to the terms of an arithmetic expression (only). This method uses
a formal analysis via Symbolic Taylor Expansions and error analysis based on interval functions
to solve a quadratically constrained quadratic program to obtain annotations. The FPTuner [7]
tool is a type system based on constraint generation and relies on local optimization by solving
quadratic problems for the set of data types. POP [17,1], is a mixed precision tuning static tool
for numerical calculations. Based on forward and backward error analysis techniques, the set of
constraints are solved by SMT solver [12] and LP solver [20] to find an optimal solution.

Other approaches rely on dynamic analysis. The Precimonious tool attempts to decrease the
precision of variables and checks whether the accuracy requirements are still fulfilled or not [26].

2

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



In [18], the authors instrument binary codes in order to modify their precision without modifying
the source codes. They also propose a dynamic search method to identify the pieces of code where
the precision should be modified.

3 Background

Before presenting the main contribution of this paper, let us present the background material
according to the IEEE-754 Standard and recall some definitions of the ulp and ufp functions
needed in our study.

3.1 IEEE-754 Standard

This paper is relying on IEEE-754 floating-point arithmetic Standard [2,23] where a float number
x is defined by :

x = s ·m · βe−p+1 (1)

with sign s ∈ {−1, 1}, mantissa m, basis β, precision p (length of the mantissa) and exponent
e ∈ [emin, emax]. Recall that we only consider the case β = 2. The IEEE-754 Standard specifies
several formats for floating-point numbers by providing specific values for p, β, emin and emax.
The standard also defines some rounding modes, towards +∞, −∞, 0 and to the nearest, re-
spectively denoted by ↑+∞, ↑−∞, ↑0 and ↑∼. Interestingly, in this paper we are considering the
rounding mode to the nearest.

The IEEE-754 Standard defines the semantics of the elementary operations ⊛r ∈ {+,−,×,÷}
by:

x⊛r y =↑∼ (x ∗ y) (2)

where ⊛r is computed by using the rounding to the nearest and ∗ ∈ {+,−,×,÷} denotes an
exact operation. Because of the round-off errors, the results of the computations are not exact.

Example 1. For instance, let us take this example of two mathematically equivalent functions f
and g defined in Equations (3) and (4) to illustrate that computations performing floating-point
arithmetic are error prone. Not that, even if these two functions are equivalents, the results may
differ.

f(x) = x2 − 2.0× x+ 1.0 (3)

g(x) = (x− 1.0)× (x− 1.0) (4)

The computation of f(0.999) and g(0.999) respectively returns 1.00000000002875566e−6 and
1.00000000000000186e−6 as results. Even on small computations, different results are obtained.
■

In addition, the propagation of errors arising during the computation is described by the ulp
(unit in the last place) and ufp (unit in the first place) functions [24,21]. These functions are very
useful in the error analysis of floating-point computations. Recall that lots of ulp definitions are
existing in the literature. The one presented in this paper consists of the ulp of floating-point
number with p significant digits.

The ulp (unit in the place) denotes the value of the last bit of the mantissa of a floating-
point number or the corresponding value for a real number [5,16]. In other words, the ulp of a
floating-point number corresponds to the binary exponent of its least significant digit. Note that

3

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



-20

	0

	20

	40

	60

	80

	100

	120

	0 	20 	40 	60 	80 	100

x	=	x	+	0.1
ufp(x	+	0.1)
ulp(x	+	0.1)

Fig. 1. Representation of ufp, ulp and x values for the control loop example (2).

several definitions of the ulp have been given [23]. In [24], the ulp(x) function is defined as the
distance between two closest representatives floating-point numbers f and f ′, so that f < x < f ′

and f ̸= f ′. It is of the form :

ulp(x) = ulp(s,m,e) = ulp × 2e (5)

The ufp function computes the unit in the first place. More precisely, the ufp of a floating-
point number corresponds to the binary exponent of its most significant digit. The ufp of a
number x is given by Equation (6).

ufp(x) = β⌊logβ |x|⌋ if x ̸= 0 and ufp(0) = 0 (6)

Nevertheless, the machine epsilon (named also machine precision) can also be used. The
machine epsilon consists in the maximum on the relative approximation error due to rounding
in floating-point arithmetic. For example, the representation of a real number x by a machine
epsilon x′, is given by Equation (7).

x′ = x+ α,with α

{
α ≤ 1

2
ulp(x) rounding to nearest

α ≤ ulp(x) otherwise (7)

Recall that, the rounding mode used in our case is to nearest. Thus, the associated round-off
error α is assumed to be less than or equal to 1

2ulp(x).
A program computing the ufp and ulp values has been implemented using the C language.

Figure 1 depicts the comparison between the computed values of the output x and its cor-
responding ufp and ulp values for the control loop given in Example 2. The implementation
clearly shows that even if the values of the ufp(x) or the ulp(x) grow, they are always under
the curve of the computed value for the output x. In other words, even if the associated error
grows, it can not exceed the output value of x inside the considered control loop example.

4

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



4 Our Approach

Observing the floating-point errors behavior in critical embedded systems consists in a hard task.
It permits to manage the computation errors and avoid faulty executions and then catastrophic
damages. Also, this behavior observation allows to detect which operation is responsible of such
abnormal behavior and then correct it. Nevertheless, the detection of which operation or value
inside the program are responsible of the bad behavior of the computations helps programmers
to anticipate, correct and improve the behavior of such program.

Our approach consists in observing the behavior of the different program values within the
control loop as well as their associated rounding errors. To this aim, the ufp and ulp functions
able to represent the rounding errors are defined. First, a set of constraints have been deduced
from the initial program presented in Example 2. Our approach relies on static analysis to deduce
the interval values of variables and constraints given by Equation (26).

4.1 Motivating Example

For example, let us consider the program of Example 2 which implements a simple integrator
within a control loop. At each iteration n of the while loop, the output x is computed as a
function of the former value of x obtained at the previous loop iteration. Then, the value of x is
integrated and then summed to 0.1.

Example 2.

x = 0.0;

while(x <= 10.0){ x = x+ 0.1; } ■

First, let us compute the rounding error on the value x within the control loop. The idea is to
represent the computed error, denoted by ϵnx , in function of ulp(x). We also assume that ulp(x) is
the machine epsilon defined formally in Section 3. More precisely, the error on x within the loop
can be written as follows: ϵnx = 1

2ulp(x), because we are using the rounding to the nearest. For
simplicity, consider ulp(x) shortened to u be the ulp of x and ulp(+) shortened to ϵx be the ulp
of the intermediary result. In other words, ϵx is the ulp of the elementary operation consisting
on the result of adding the value 0.1 to x.

Initially, let us unfold the body of the control while loop n times. Thus, the expression of x
will be written in the following way:

x = 0.0 + 0.1 + 0.1 + · · ·+ 0.1︸ ︷︷ ︸
n times

(8)

In the following, the associated error ϵx at each control point of the Equation (8) is computed.
Notice that, for the sake of simplicity, control points have been put only on the arithmetic
operations of Equation (9). These arithmetic operations, the additions, are defined as control
points of the program and denoted by +(i), for i ∈ {1,..,n} with n ∈ N.

x = 0.0 +(1) 0.1 +(2) 0.1 +(3) · · ·+(n) 0.1︸ ︷︷ ︸
n times

(9)

Let ϵix denote the associated round-off error of the float value x at iteration i, for i ∈ {1,..,n}
with n ∈ N.

5

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



For the first iteration i = 1; Equation (8) is of the form x = 0.0 +(1) 0.1 and its associated
round-off error ϵ1x is written as follows:

ϵ1x = ulp(0.0) + ulp(0.1) + ulp(+(1)) (10)

In other words, the associated rounding-error is equals to the error associated to each floating-
point values (operands) plus the error introduced by the arithmetic operation (the addition). For
simplicity, consider u be the ulp(x) and ϵx be the ulp(+(i)) and assume that ulp(0.0) is close
to ulp(0.1), then ulp(0.0) ≈ ulp(0.1) = u. Thus, Equation (10) will be written like that :

ϵ1x = u+ u+ ϵx (11)

We simplify Equation (11), we obtain the following formula:

ϵ1x = 2× u+ ϵx (12)

For the second iteration i = 2; Equation (8) is of the form x = 0.0 +(1) 0.1 +(2) 0.1 and its
associated round-off error ϵ2x is formulated as follows:

ϵ2x = ϵ1x + u+ ϵx (13)

After replacing ϵ1x obtained in Equation (12) within Equation (13), we obtain :

ϵ2x = 2× u+ ϵx + u+ ϵx (14)

After simplification, Equation (14) will be of the form:

ϵ2x = 3× u+ 2× ϵx (15)

For the third iteration i = 3; we have that x = 0.0+(1)0.1+(2)0.1+(3)0.1 and ϵ3x is represented
by the following equations:

ϵ3x = ϵ2x + u+ ϵx = 3× u+ 2× ϵx + u+ ϵx (16)

We replace and simplify the expression of ϵ3x, it will be written like this:

ϵ3x = 4× u+ 3× ϵx (17)

Let us now generalize to n iterations. The below formula computes the associated round-off
error ϵnx as following:

ϵnx = (n+ 1)× u+ n× ϵx (18)

By factorizing and simplifying the computations done in Equation (18), the associated error
ϵnx is written in the following form:

ϵnx = n× (u+ ϵx) + u (19)

Once the associated error ϵnx is computed, let us now tackle the computation of the formal
values of variables and constants within the program of the while loop. To this end, consider the
previous Example 2, and annotate it with control points (or labels; denoted by ℓi, for i{1,..,n} ∈ N)
to facilitate the computation of the formal values of x. For a sink of simplicity, we associate control

6

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



points just to variables and constants. Thus, we are not considering them for the arithmetic
operations (addition).

xℓ0 = 0.0;

while(xℓ1 <= 10.0ℓ2){ xℓ3 = x+ 0.1ℓ4 ; }

To start, the range of values is given using intervals. From the control loop program, the
formal value of the variable x at control point ℓ0, according to Equation (2) and following its
initialization is xℓ0 = [0.0, 0.0]. At the control point ℓ1, the formal value of x is given by :

xℓ1 = [0.0, 10.0] (20)

More precisely, this range is deduced from the initialization of xℓ0 and the condition of the while
loop according to the example 2.

The range of the constant 10.0 at control point ℓ2 is:

xℓ2 = [10.0, 10.0] (21)

The range of the constant 0.1 at control point ℓ4 is:

xℓ4 = [0.1, 0.1] (22)

Inside the while loop, the formal value of x at control point ℓ3 is the interval [0.0,10.0]. This
range is obtained using the static analysis method by processing as follows:

For the first iteration, the range of xℓ3 is equal to [0.0,0.1]. This range is obtained by applying
a join operator, denoted by ∪, between xℓ0 and xℓ4 . In other words, we merged the abstract
states for xℓ0 and xℓ4 . See Equation (23).

xℓ3 = [0.0, 0.0] ∪ [0.1, 0.1] = [0.0, 0.1] (1st iteration) (23)

For the next loop iteration, while the condition is statically satisfied, the previous process of
joining the former range of xℓ3 with the value at control point ℓ4 is applied. We summarize these
steps through the following equations:

xℓ3 = [0.0, 0.1] ∪ [0.1, 0.1] = [0.0, 0.2] (2nd iteration)

xℓ3 = [0.0, 0.2] ∪ [0.1, 0.1] = [0.0, 0.3] (3rd iteration)

. . .

In order to reach quickly the fix-point and so terminate the analysis of the while loop quickly, the
widening is applied, denoted by the symbol ∇, for xℓ3 using the range values at control points
ℓ1 (see Equation (20)) and ℓ4.

xℓ3 = [0.0, 10.0]∇[0.1, 0.1] = [0.0,+∞] (24)

Finally, the intersection of the two ranges of x at control points ℓ1 and ℓ3 obtained by widening
in Equation (24), gives:

xℓ3 = [0.0, 10.0] ∩ [0.0,+∞] = [0.0, 10.0] (25)

From the snippet of code given in Example 2, we deduce that the value of x is bounded by
the interval [0.0, 10.0] thanks to the static analysis method by abstract interpretation [3,8], that
permits to infer safe ranges for the variables and compute errors bounds on them..

7

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



At this level, we will go one step further by deducing some constraints from the previous
equations presented formerly. Equation (26) shows these constraints.

n > 0,
x0 = 0.0,
x ∈ [0.0, 10.0],
x = x0 + n× 0.1,
ϵnx = n× (u+ ϵx) + u,

(26)

– n, with n ∈ N is the iterations number of the while loop,
– x0 = 0.0, obtained from program declaration and initialization,
– x ∈ [0.0, 10.0], obtained by static analysis (see more details of computations in Equations (23)

to (25)),
– x = x0 + n× 0.1, consists in the while loop unfolding,
– ϵx, consists in the error computation obtained by Equation (19).

This system of equations is very helpful to go through the main aim of this paper. Recall that
the main purpose being to study the behavior of the error ϵnx and the variable x, to prove that
at each iteration, the value of the computed error do not exceed the value of variable x.

5 Proof Correctness of the Approach

This section presents a proof correctness of our approach based on the constraints set presented
previously by Equation (26) in Section 4.1. The main aim of this proof is to demonstrate that for
each iteration n of the control loop, the value of x must be greater than or equal to its associated
error computed using the ulp and ufp functions formulas given by Equation (5). We believe
that, even if the computed error is accumulated and propagated, it always stays down the x
value within the control loop body and this for each iteration n. In other words, the value of the
computed error ϵnx releases always smaller than the value of x.

In section 3, we have that α ≤ 1
2ulp(x) by definition. For simplicity, the ulp(x) is shortened

as u. That gives α ≤ 1
2u. Typically, the error term presented by α formerly, is similar to the error

ϵx detailed in Section 4.1. Thus, the α formula may be expressed by Equation (27) as following:

ϵx ≤ 1

2
u (27)

In order to link Equation (27) to the computed error on ϵ1x, the term 2u is added for each
side of the Equation (27). The new equation is :

2u+ ϵx ≤ 2u+
1

2
u (28)

Let us simplify the right side of Equation (27). We obtain :

2u+ ϵx ≤ 5

2
u (29)

From Equation (29), we observe that, the left term of the equation, consists in the definition of
the ϵ1x. The Equation (29) will be written like follows:

ϵ1x ≤ 5

2
u (30)

8

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



Now, let us generalize for the ϵnx . From Equation (26), we have that:

ϵnx = n× (u+ ϵx) + u, ∀n ∈ N (31)

Let us start the first part of our correctness proof. We have that from Equation (27):

ϵx ≤ 1

2
u (32)

Then, by adding the term u to each side of the Equation (32), we get:

u+ ϵx ≤ u+
1

2
u (33)

After simplification, we obtain:
u+ ϵx ≤ 3

2
u (34)

Now, let us multiply the Equation (34) by n, the Equation (35) will be written like that:

n× (u+ ϵx) ≤ n× 3

2
u (35)

Adding the term u to Equation (35), we obtain:

n× (u+ ϵx) + u ≤ n× 3

2
u+ u (36)

Simplifying the previous Equation (36), we get:

n× (u+ ϵx) + u︸ ︷︷ ︸
ϵnx

≤ u(
3

2
n+ 1), ∀n ∈ N (37)

The left side of Equation (37) consists in the definition of the error ϵnx given in the Equa-
tion (31). Therefore, Equation (37) is written as follows:

ϵnx ≤ u(
3

2
n+ 1), ∀n ∈ N. (38)

In the rest of this section, let us prove by induction the correctness of the following property
P(n). More precisely, we want to prove that for each n ∈ N, this property is valid:

P (n) : ϵnx ≤ u(
3

2
n+ 1), ∀n ∈ N

– Initialization : P(1), n = 1.
The computations of the ulp(x) for the first iteration of the while loop (see Equation (26))
gives that the ulp(0.1) is equal to −9. Recall that, the value of x within the control loop, x
= x + 0.1, is equal to 0.1 for the first iteration (when n = 1). Let us replace this value in
Equation (38), that gives:

ϵ1x ≤ u(
3

2
× 1 + 1) ⇒ ϵ1x ≤ −45

2
(39)

⇒ ϵ1x ≤ 0.1 (40)

Consequently, from Equation (39), we find that ϵ1x is less or equal to − 45
2 , that means ϵ1x is

less than 0.1 (the value of x within the control loop, for the first iteration). To conclude, the
property P(1) is satisfied.

9

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



– Heredity: P(n) ⇒ P(n+1)
Let us assume that the property P(n) given by Equation (41) is true and check that the
property P(n+1) given by Equation (42) is verified.

P (n) : ϵnx ≤ u(
3

2
n+ 1) (41)

P (n+ 1) : ϵn+1
x ≤ u(

3

2
(n+ 1) + 1) (42)

To start, let us take the term error ϵnx presented by Equation (26). For n+1, we have :

ϵn+1
x = (n+ 1)× (u+ ϵx) + u (43)

We develop the Equation (43), we find:

ϵn+1
x = n× u+ n× ϵx + u+ ϵx + u ⇒ ϵn+1

x = n(u+ ϵx) + u︸ ︷︷ ︸
ϵnx

+ϵx + u (44)

Then, the ϵn+1
x is of the form:

ϵn+1
x = ϵnx + ϵx + u (45)

We have formerly that

ϵnx ≤ u(
3

2
n+ 1) (46)

Now, let us inflate the Equation (46). To begin, recall the equation of ϵx term ϵx ≤ 1
2u. After

adding the term u to each side of ϵx, we have:

ϵx + u ≤ 1

2
u+ u =

3

2
u (47)

By summing Equations (46) and (47), we obtain:

ϵnx + ϵx + u︸ ︷︷ ︸
ϵn+1
x

≤ u(
3

2
n+ 1) +

3

2
u ⇒ ϵn+1

x ≤ u(
3

2
n+ 1) +

3

2
u (48)

The factorization and simplification of the right side of Equation (48) gives the following
formula:

u(
3

2
n+ 1) +

3

2
u = u(

3

2
n+

3

2
+ 1) ⇒ u(

3

2
n+ 1) +

3

2
u = u(

3

2
(n+ 1) + 1) (49)

Equation (48) will be written like that:

ϵn+1
x ≤ u(

3

2
(n+ 1) + 1) (50)

To conclude, the property P(n) ⇒ P(n+1) is verified. Thus, ∀n ∈ N, the ϵnx ≤ u( 32n + 1) is
verified. Finally, we have demonstrated through the mathematical proof the correctness of
our approach based on the study of the behavior of the error.

10

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



6 Conclusion

The main idea investigated in this paper is to study the behavior of round-off errors in the case
of an integrator in a control loop in order to ensure that the results of computing rounding errors
do not become larger than the output of the program. Thanks to the ulp and ufp functions used
to estimate the maximum rounding error value. The motivating example shows that for this
kind of computations, the rounding errors is always smaller than the output of the integrator.
Of course, errors get larger, but not enough to exceed the program output value. To emphasize
our approach, a mathematical proof based on induction has been made. We have demonstrated
though it the correctness of our approach.

In future work, this study will be extended to automate the process of generating the programs
constraint set and solving them using an SMT solver [12] or Z3 solver [20]. Also, it will be
appreciated to experiment the approach on real and more complete programs, linear or not, to
generalize this study. Another research consists in studying the impact of predicting the behavior
of program rounding errors on the safety and security of critical embedded systems. These two
aspects are very sensitive and contribute greatly to avoiding catastrophic damage.

Acknowledgments

This work was supported by the Defense Innovation Agency (AID) of the French Ministry of
Defense (research project CONCORDE Nř 2019 65 0090004707501).

References

1. Assalé Adjé, Dorra Ben Khalifa, and Matthieu Martel. Fast and efficient bit-level precision tuning.
In Sensors Applications Symposium, 2021.

2. ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, std 754-2008 edition, 2008.
3. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, and A. Miné. Static analysis by abstract

interpretation of embedded critical software. ACM SIGSOFT Software Engineering Notes, 36(1):1–8,
2011.

4. S. Boldo, J-H. Jourdan, X. Leroy, and G. Melquiond. Verified compilation of floating-point compu-
tations. Journal of Automated Reasoning, 54(2):135–163, 2015.

5. S. Boldo and G. Melquiond. Flocq: A unified library for proving floating-point algorithms in coq.
In Elisardo Antelo, David Hough, and Paolo Ienne, editors, 20th IEEE Symposium on Computer
Arithmetic, ARITH, pages 243–252, 2011.

6. Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh Gopalakrishnan, and Zvon-
imir Rakamaric. Rigorous floating-point mixed-precision tuning. In POPL, pages 300–315, 2017.

7. Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh Gopalakrishnan, and Zvon-
imir Rakamarić. Rigorous floating-point mixed-precision tuning. SIGPLAN Not., 52(1):300315, jan
2017.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In POPL’77, pages 238–252, 1977.

9. N. Damouche and M. Martel. Salsa: An automatic tool to improve the numerical accuracy of
programs. In B. Dutertre and N. Shankar, editors, Automated Formal Methods, AFM@NFM 2017,
volume 5 of Kalpa Publications in Computing, pages 63–76, 2017.

10. N. Damouche, M. Martel, and A. Chapoutot. Intra-procedural optimization of the numerical accu-
racy of programs. In Manuel Núñez and Matthias Güdemann, editors, 20th International Workshop
Formal Methods for Industrial Critical Systems, FMICS, volume 9128 of LNCS, pages 31–46, 2015.

11. E. Darulova and Viktor Kuncak. Sound compilation of reals. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL, pages 235–248, 2014.

11

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024



12. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and
Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340, Berlin, Heidelberg, 2008.

13. D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine. Towards an industrial use
of FLUCTUAT on safety-critical avionics software. In FMICS’09, pages 53–69, 2009.

14. E. Goubault. Static analysis by abstract interpretation of numerical programs and systems, and
FLUCTUAT. In Static Analysis Symposium, SAS, volume 7935 of LNCS, pages 1–3, 2013.

15. J. Harrison. Floating-point verification. J. UCS, 13(5):629–638, 2007.
16. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70, 2008.
17. Dorra Ben Khalifa, Matthieu Martel, and Assalé Adjé. Pop: A tuning assistant for mixed-precision

floating-point computations. In International Workshop on Formal Techniques for Safety-Critical
Systems, 2019.

18. Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supinski, and Matthew P. LeGendre. Au-
tomatically adapting programs for mixed-precision floating-point computation. In Supercomputing,
ICS’13, pages 369–378, 2013.

19. Wonyeol Lee, Rahul Sharma, and Alex Aiken. On automatically proving the correctness of math.h
implementations. PACMPL, 2(POPL):47:1–47:32, 2018.

20. Andrew Makhorin. GNU Linear Programming Kit. https://www.gnu.org/software/glpk/. Ac-
cessed: 2012/06/23.

21. Matthieu Martel. Floating-point format inference in mixed-precision. In Clark Barrett, Misty Davies,
and Temesghen Kahsai, editors, NASA Formal Methods - 9th International Symposium, NFM 2017,
volume 10227 of LNCS, pages 230–246, 2017.

22. Mariano M. Moscato, Laura Titolo, Aaron Dutle, and César A. Muñoz. Automatic estimation of
verified floating-point round-off errors via static analysis. In Stefano Tonetta, Erwin Schoitsch, and
Friedemann Bitsch, editors, SAFECOMP, volume 10488 of LNCS, pages 213–229, 2017.

23. J-M Muller, N. Brisebarre, F. de Dinechin, C-P Jeannerod, V. Lefèvre, G. Melquiond, N. Revol,
D. Stehlé, and S. Torres. Handbook of Floating-Point Arithmetic. 2010.

24. J-M Muller and Marc Daumas. Qualité des calculs sur ordinateur : vers des arithmétiques plus fiables
? 1997.

25. P.G. Neumann. Technical report - uss yorktown dead in water after divide by zero., 1998.
26. Cuong Nguyen, Cindy Rubio-Gonzalez, Benjamin Mehne, Koushik Sen, James Demmel, William

Kahan, Costin Iancu, Wim Lavrijsen, David H. Bailey, and David Hough. Floating-point precision
tuning using blame analysis. In Int. Conf. on Software Engineering (ICSE), 2016.

27. P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock. Automatically improving accuracy
for floating point expressions. In PLDI’15, pages 1–11, 2015.

28. A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrishnan. Rigorous estimation of floating-
point round-off errors with symbolic taylor expansions. In FM’15, volume 9109 of LNCS, pages
532–550, 2015.

29. Patriot missile defense : Software problem led to system failure at dhahran, saudi arabi., 1992.
30. Ariane 5 flight 501 failure., 1996.

Nasrine Damouche is a Research Engineer specializing in Critical Sys-
tems within the Critical Systems Design and Analysis research group at the
Department of Complex Systems Engineering at ISAE-SUPAERO, Université
de Toulouse, France. She received her Ph.D. in Computer Science from the Uni-
versity of Perpignan. Her research interests include formal methods, abstract
interpretation based on static analysis, program semantics, numerical accuracy,
compilation and recently model-based systems engineering and timing analysis
in real-time systems.

International Journal of Programming Languages and Applications ( IJPLA ) Vol 14, No 1, January 2024

12

https://www.gnu.org/software/glpk/

	A study of the Behavior of Floating-Point Errors



