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ABSTRACT

John Backus identified value-level (object-level) programming languages as programming languages

that combine various values to form other values until the final result values are obtained. Virtually

all our classic programming languages today including C, C++, and Java belong into this category.

Here we identify pattern-level (term-level) programming languages that combine various patterns

to form other patterns until the final result patterns are obtained. New patterns are constructed

from existing ones by the application of pattern-to-pattern functions exploiting pattern matching and

constructors. First-order logic programming languages such as Prolog, OBJ, and Maude belong into

this category. Our insight that pattern-level and value-level programming gives rise to a pattern-

value duality is used as the foundation of the design of a new programming language called Asteroid.

Hallmarks of this new programming language design are the developer’s ability to explicitly control

the interpretation or model of expression terms and the notion of ‘patterns as first class citizens’.

In addition to a complete implementation of pattern-level programming Asteroid also supports an

object-oriented style of programming based on prototypes and also subject to pattern matching.
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1. Introduction

Pattern matching is a very powerful and useful device in programming [1].

Abstractly, pattern matching can be defined as:

Pattern matching is the act of checking a given sequence of tokens or structure
(the subject) for the presence of the constituents of some pattern.

– Wikipedia

In the context of this definition a pattern does three things [2]:

1. Decide whether a given subject has a certain structure;

2. Extract zero or more pieces;
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Listing 1: Basic pattern matching in Asteroid.

1 func t i on p o s t f i x
2 with ( op , c l , c r ) do −− match binary node
3 re turn ( p o s t f i x ( c l ) , p o s t f i x ( cr ) , op )
4 orwith ( op , c ) do −− match unary node
5 re turn ( p o s t f i x ( c ) , op )
6 orwith (v , ) do −− match l e a f
7 re turn (v , )
8 end func t i on

3. Bind those pieces to variables in a certain context.

The Asteroid code in Listing 1 is an example of pattern matching on function arguments:
if a given pattern appearing in a (or)with-clause matches the function input then the
corresponding function body is executed. This particular function recursively turns a tree
structure written in Lisp-like prefix notation into its corresponding postfix notation. What
is implicit in this example is that we are only allowed to pattern match on constructors,
that is, functions that represent a structure rather than compute a value.

Value-level programming languages are programming languages that combine various
values to form other values until the final result values are obtained. Here we identify
pattern-level (term-level) programming languages as opposed to value-level languages that
combine various patterns to form other patterns until the final result patterns are obtained.
New patterns are constructed from existing ones by the application of pattern-to-pattern
functions exploiting pattern matching and constructors.

Our insight that pattern-level and value-level programming gives rise to a pattern-value
duality is used as the foundation of the design of a new programming language Asteroid.
Hallmarks of this new programming language design are the developer’s ability to explicitly
control the interpretation or model of expressions terms and the notion of ‘patterns as first
class citizens’. In the context of the ability to manipulate the interpretation of expression
terms we are able to develop an elegant semantics for pattern matching. In addition
to a complete implementation of pattern-level programming Asteroid also supports an
object-oriented style of programming based on prototypes and which is also subject to
pattern-matching.

The remainder of the paper is organized as follows: Section 2. puts our work in the
context of related work. We look at pattern-level versus value-level programming in Sec-
tion 3.. Our notion of pattern-value duality is defined in Section 4.. An outline of the
major features of the Asteroid language is given in Section 5.. We make some general
observations and talk about further work in Section 6.. In Section 7. we make some final
remarks.

2. Related Work

Pattern matching first appeared in functional programming languages such as SASL [3]
and HOPE [4] in the 1970’s and early 1980’s as a way to make data structure analysis
and decomposition more declarative. It was adopted by functional languages such as SML
[5] and Haskell [6] in the 1990’s for similar reasons. Today, many modern programming
languages such as Python [7], Rust [8], and Swift [9] incorporate some form of pattern
matching into the syntax and semantics of the language (as opposed to offering pattern
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matching as a module/library add-on, e.g. [10]). Furthermore, pattern matching has been
studied in different formal computational settings such as the λ-calculus [11, 12] and first-
order logic [13]. One of the most comprehensive implementation of pattern matching we
are aware of is in the Thorn programming language [2].

If we look beyond functional and imperative programming languages then we find that
pattern matching or unification is at the heart of logic programming languages such as
Maude [14] and Prolog [15]. Pattern matching is at the core of term rewriting which is
considered the operational semantics for equational logic languages like Maude. Unifica-
tion in Prolog can be viewed as an extended version of pattern matching where not only
the pattern is allowed to contain variables but also the subject term.

As useful and powerful as the pattern matching paradigm is, the implementation of
pattern matching in most modern programming languages falls short. Here are a few
examples,

• With the exception of Thorn none of the present day programming languages support
patterns as first class citizens in the same sense that anonymous/lambda functions
are now supported by virtually all modern programming languages.

• In most programming languages there is an arbitrary split between constructors
that are supported in pattern matching and constructors which are not supported in
pattern matching. For example, Python and Swift allow the user to pattern match on
tuple and list constructors but not on constant constructors (or expression patterns
in Swift terminology). To be fair, Swift does allow constant constructor patterns
in a narrow context limited to its ‘switch’ statement. This arbitrary split between
constructors that are supported by pattern matching and those that are not seems
to violate the notion of orthogonality in programming language design [16, 17].

• Overly restrictive pattern matching semantics. Consider the following ‘let’ state-
ment:

l e t (1 , y ) = ( 1 , 2 ) ;

In Rust this is a syntactically correct program but fails to compile due to being a
refutable pattern. This is analogous to saying that ‘x = y/z’ is a refutable computa-
tion because the undefined value due to a division by zero is usually not allowed to
be assigned to a variable and therefore the statement should not compile. No pro-
gramming language implements this in this way. Instead we rely on exceptions being
raised in such contexts. Therefore, rather than failing to compile, the ‘let’ example
above should generate a runtime exception if the pattern match fails. The equiv-
alent statement in Python (no ‘let’ keyword and no semi-colon required) fails due
to a ‘cannot assign to constants’ error indicating that Python treats this statement
with an awkward mix of pattern matching and assignment semantics.

• Languages such as Python and Swift support object-oriented programming but do
not support pattern matching on objects.

Here we introduce Asteroid, a new experimental language that employs the insight that
patterns and values are dual aspects of expression structures and thereby provides a much
more integrated view of programming with patterns. This pattern-value duality is most
clearly visible with constants that in one instance can be viewed as values in an expression

3



International Journal of Programming Languages and Applications (IJPLA) Vol.08, No.1/2/3/4, October 2018

and in another instance as patterns during pattern matching depending on the current
interpretation of these structures.

Not only does Asteroid address the problematic areas touched upon above but it also
addresses the fact that the fixed underlying interpretation of expression structures in
our current generation of programming languages interferes with the full deployment of
pattern matching as a programming paradigm. Consider for example the ‘+’ operator. In
virtually all modern programming languages this has a fixed, value based meaning which
can be extended via overloading but ultimately not really changed. This has consequences
for pattern matching in that the fixed meaning of the ‘+’ operator is usually a function
other than a constructor and therefore operators such as the ‘+’ operator cannot be used
in patterns forcing the developer to forsake the most natural expression of a pattern and
implement a desired pattern/structure via some sort of secondary (non-optimal) notation.
In contrast our Asteroid language avoids attaching rigid interpretations to operators such
as ‘+’ and therefore the following Asteroid ‘let’ statement can be interpreted as a legal
pattern matching statement:

l e t 1 + 1 = 1 + 1 .

Under Asteroid’s default model the right side of the equal sign is interpreted as a term
(not a value!), the subject term, and the left side of the equal sign is interpreted as a
pattern. We can paraphrase the computation by:

Let the expression 1+1 on the right side be interpreted as a term in Asteroid’s
default model and pattern match it with the pattern 1 + 1 on the left side.

In Asteroid default model all expression level symbols are term constructors that can be
used to construct term expressions or can be used as patterns. However, the developer
can attach a specific behavior or interpretation to individual expression symbols in order
to turn expression terms into values. This is not unlike Prolog where terms have no
interpretation beyond the Least Herbrand Model term model [18] but can acquire specific
interpretations by mapping terms into values, e.g. using the ‘is’ predicate. Consider the
following Prolog queries,

?− 1 + 1 = 1 + 1 .
t rue
?− 2 = 1 + 1 .
f a l s e
?− 2 i s 1 + 1 .
t rue
?− 1 + 1 i s 1 + 1 .
f a l s e

The first two queries demonstrate that in Prolog the ‘+’ symbol has no meaning beyond
being a term constructor and therefore the 1 + 1 term has no meaning beyond being an
term structure.

The second set of queries demonstrates that the ‘is’ predicate assigns a standard al-
gebraic interpretation to operator symbols such as ‘+’ in the right side term, evaluates
that term using this interpretation, and then unifies the result value interpreted as a term
with the left side term. It is entirely conceivable that one could write a new version of
the ‘is’ predicate that would provide a completely different interpretation of the right side
operator symbols.

The idea that a programming language can have multiple interpretations for a set of
operator symbols as in Prolog had a fundamental impact on the design of Asteroid. The
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Listing 2: Pattern matching and models in Asteroid.

1 load ” i o ” .
2
3 load ” d e f au l t ” . −− load d e f au l t term model
4 l e t 1 + 1 = 1 + 1 .
5 t ry
6 l e t 2 = 1 + 1 . −− throws an except ion
7 catch do
8 p r i n t ” pattern match f a i l e d ” .
9 end try

10
11 load ” standard ” . −− load standard model
12 l e t 2 = 1 + 1 .
13 try
14 l e t 1 + 1 = 1 + 1 . −− throws an except ion
15 catch do
16 p r i n t ” pattern match f a i l e d ” .
17 end try

program in Listing 2 is Asteroid’s equivalent of the above Prolog queries. As we have seen
before, under the default term model (loaded on line 3) the ‘let’ statement on line 4 shows
that the entity on the right of the equal sign is interpreted as a structure which can then
be pattern matched to the pattern on the left side. The ‘let’ statement on line 6 throws
an exception since the structure on the right cannot be pattern matched to the pattern
on the left in the term model. On line 11 we load Asteroid’s standard interpretation for
arithmetic operators. We show on line 12 that in this standard model the expression ‘1
+ 1’ is interpreted as the value two. This value in turn is then interpreted in Asteroid’s
term model as the term ‘2’ which is then pattern matched against the pattern on the
left side of the assignment statement. The last ‘let’ statement “proves” that the result
of ‘1 + 1’ under the standard model is not a structure by throwing a ‘pattern match
failed’ exception. Bear in mind that Asteroid is not a logic programming language. The
similarities between Asteroid and Prolog end pretty much here.

By giving the developer the ability to directly manipulate the model/interpretation
attached to “standard” operators in Asteroid the confusion and limitations of patterns
versus values can be brought under control and it directly addresses the issue of expression
punning raised in [2]. This ability to have a fully dynamic interpretation of its constructor
symbols firmly sets Asteroid apart from Thorn and any of the other modern programming
languages such as Python, Rust, and Swift.

3. Pattern-level vs. Value-level Programming

John Backus identified value-level (object-level) programming languages as programming
languages that combine various values to form other values until the final result values
are obtained. New values are constructed from existing ones by the application of various
value-to-value functions [19]. The values are objects that have a hidden internal structure
that only becomes explicit during the computational steps when applying a function to a
value. Virtually all our classic programming languages today including C [20], C++ [21],
and Java [22] belong into this category.

Here we identify pattern-level (term-level) programming languages that combine var-
ious patterns to form other patterns until the final result patterns are obtained. New
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patterns are constructed from existing ones by the application of pattern-to-pattern func-
tions and constructors. Constructors can be viewed as a special case of pattern-to-pattern
functions. Patterns (terms) have an explicit structure that can be processed directly
through pattern matching during the computational steps of a program. First-order logic
programming languages such as Prolog [18], OBJ [23], and Maude [14] belong into this
category.

We treat patterns and terms as synonymous since in our view when pattens are fully
implemented in a programming language then any pattern can become a term and any
term can become a pattern. It is clear that any term can be considered a pattern since
a term has structure that can be matched against a subject term. The converse that any
pattern can be considered a term is not so obvious because patterns can have variables.
However, if the variables appearing in a pattern are bound to term structures then it is
clear that a pattern can be considered a term.

Programming languages such as Python [7], Swift [9] and Rust [8] fully support the
value-level programming model and some aspects of the pattern-level programming model.
Most notably, the ”pattern as first-class citizen” is missing from virtually all these lan-
guages. The same holds for most declarative languages such as SML [5] that use patterns
extensively but lack the ability to manipulate patterns directly.

There is one exception: the scripting language Thorn [2] which of course implements
value-level programming but also implements pattern-level programming in an imperative
language setting.

An interesting observation is that most modern programming languages (e.g. SML,
Python, Swift, Rust, Thorn, etc.) are value-level programming languages which support
some degree of pattern-level programming and that Asteroid is a pattern-level program-
ming language (by default only the term model is available in Asteroid) that also supports
value-level programming (by loading the standard model – see Listing 2).

4. The Pattern-Value Duality

As the designers Thorn recognized in their “pattern punning” comments [2], patterns and
values are often only disambiguated in the context of a computation. This gives rise to
our notion of the pattern-value duality,

1. An expression structure interpreted in a term model such as the Least Herbrand
Model [18] or an initial algebra-like model [24] is a term or pattern.

2. An expression structure interpreted in a value-based model such as the standard
mathematical interpretation for algebraic operators is a value.

As we have seen, we can use this dual view of expression structures to give an elegant
semantics to the ‘let’ statements appearing in Listing 2. The ‘let’ statement on line 4
is interpreted in the default Asteroid term model. The right side of the statement is
interpreted as the term ‘1 + 1’ whose structure can be matched directly by the pattern on
the left. The ‘let’ statement in Listing 2 on line 12 is interpreted in the standard Asteroid
model. Here the right side of the ‘let’ statement is first evaluated to the value two in this
standard model. In preparation to the pattern matching step this value viewed as the
constructor ‘2’ is then interpreted in the Asteroid term model and now the pattern of the
left side of the ‘let’ can be applied to the right side for a pattern match step. Many of the
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other pattern matching operations available in Asteroid can be given a similar semantics
based on the pattern-value duality.

A noteworthy consequence of this semantics is that the only things ever associated
with variables are term structures. Consider the following Asteroid code,

load ” standard ” .
l e t v = 1 + 1 .

Here the variable ‘v’ is a pattern and according to our semantics above the term ‘2’ is
bound to ‘v’ during pattern matching. Since term structures are easily reinterpreted
under different models there are no semantic difficulties with switching models during the
execution of a program.

In Asteroid we can fully exploit pattern-level programming making use of this duality
by giving the developer explicit control over the interpretation of structures. This approach
is in stark contrast to Thorn where even though the implementation of pattern matching
is fairly complete their static interpretation of expressions such ‘1 + 1’ as a value limits
pattern-level programming in that language.

5. Asteroid the Programming Language

Asteroid [25] is an imperative style programming language under development that fully
supports both value-level and pattern-level programming. It was highly influenced by
the minimalistic approach to data structures and object-orientation in the programming
language Lua [26]. The focus on readability and the “pythonic” view of programming
in Python [7] had a major impact on the syntax of the Asteroid language [27, 28]. The
programming language ML [5] had an influence on the function level pattern matching
syntax in Asteroid. Many of the semantic issues around pattern matching with first class
patterns worked out in Thorn [2] had a direct impact on the design of pattern matching
in Asteroid. Finally, the idea of separating term structure from a more value-oriented
interpretation was inspired by the Herbrand models in Prolog [18] as well as the initial
term algebras in algebraic data type specification [24, 29].

In the following section we will highlight Asteroid functionality. Few if any of the
features discussed here are available in languages such as Python, Swift, and Rust. Many
of the pattern matching features including patterns as first class citizens in Asteroid are
also available in Thorn [2]. However, due to the fact that Thorn has a fixed interpretation
of terms many of the model based pattern matching operations Asteroid supports are not
available in Thorn.

5..1 Manipulating the Model

We demonstrate how a developer can explicitly manipulate the interpretation of terms.
A simple program that manipulates the interpretations of expressions is given in List-
ing 3. This program prints out the value of the term ‘4 + 3 - 2’ under three different
interpretations:

1. Under the default term model (line 4);

2. Under the standard model (line 10);

3. Under the standard model with the interpretations for ‘+’ and ‘-’ swapped (line 26).
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Listing 3: Swapping the interpretation of plus and minus.

1 load ” i o ” . −− load i o module
2
3 −− pr in t out the value us ing the d e f au l t term model
4 p r i n t (4+3−2).
5
6 −− load the standard model
7 load ” standard ” .
8
9 −− pr in t out the value us ing the standard model

10 p r i n t (4+3−2).
11
12 −− save the i n t e r p r e t a t i o n s
13 l e t p lus op = p l u s .
14 l e t minus op = minus .
15
16 −− detach the i n t e r p r e t a t i o n s from con s t ru c t o r s
17 detach from p l u s .
18 detach from minus .
19
20 −− r ea t tach in oppos i t e order
21 attach p lus op to minus .
22 attach minus op to p l u s .
23
24 −− pr in t the value o f the term us ing
25 −− the modi f i ed standard model
26 p r i n t (4+3−2).

The Asteroid interpreter is initialized with the term model in place. The load command
on line 7 loads the standard model: the model with the usual interpretations for all
the standard operator symbols. It should be noted that the standard model supports
overloaded symbols (e.g., ‘+’ as an addition as well as string concatenation) as well as
type promotion (e.g., the expression ‘1 + 2.3’ will evaluate to the floating point value
3.3). The code from line 12 through line 22 swaps the interpretation of the ‘+’ and the
‘-’ operator symbols. Here the symbols ‘ plus ’ and ‘ minus ’ are the internal names of
the corresponding operators. The program generates the following output:

minus ( [ p l u s ( [ 4 , 3 ] ) , 2 ] )
5
3

Here the first line is the output under the term model (line 4) and shows a dump of the
internal term structure of the expression ‘4 + 3 - 2’ in prefix format. The second line is the
output under the standard model (line 10). Given the usual interpretation of ‘+’ and ‘-’
the expression ‘4 + 3 - 2’ evaluates to the value 5. The third line shows the output under
the modified standard model with the interpretation of ‘+’ and ‘- swapped (line 26). In
this case the expression ‘4 + 3 - 2’ evaluates to the value 3.

5..2 Basic Pattern Matching

The ability of manipulating the interpretation of expression terms allows the developer to
pattern match on operator symbols usually reserved for value computations. We saw some
of this already in Listing 2 where the ‘+’ operator symbol can be used for pattern matching
under the default term model. Listing 4 shows another version of this program where we
take advantage of quoted expressions. Quoted expressions allows the programmer to treat
expressions as constructor terms in the presence of a model other than the term model
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Listing 4: Pattern matching, models, and quoted expressions in Asteroid.

1 load ” standard ” .
2 load ” i o ” .
3 load ” u t i l ” .
4
5 l e t 1 + 1 = ’1 + 1 . −− quoted expr e s s i on
6 l e t 2 = eva l ( ’ 1 + 1 ) .
7 l e t 2 = 1 + 1 .
8 t ry
9 l e t 1 + 1 = 1 + 1 . −− throws an except ion

10 catch do
11 p r i n t ” pattern match f a i l e d ” .
12 end try

Listing 5: The Quicksort in Asteroid.

1 load ” standard ” .
2 load ” i o ” .
3
4 func t i on qso r t
5 with [ ] do
6 re turn [ ] .
7 orwith [ a ] do
8 re turn [ a ] .
9 orwith [ p ivot | r e s t ] do

10 l e t l e s s = [ ] .
11 l e t more = [ ] .
12
13 f o r e in r e s t do
14 i f e < p ivot do
15 l e t l e s s = l e s s + [ e ] .
16 e l s e
17 l e t more = more + [ e ] .
18 end i f
19 end f o r
20
21 re turn qso r t l e s s + [ p ivot ] + qso r t more .
22 end func t i on
23
24 p r i n t ( q so r t [ 3 , 2 , 1 , 0 ] )

and pattern match against that structure as shown on line 5. Quoted expressions can
be interpreted in the current model using the ‘eval’ function as shown on line 6. The
remaining program is almost identical to the code in Listing 2.

As we saw in Listing 1, Asteroid supports pattern matching on function arguments
in the style of ML and many other functional programming languages. Listing 5 shows
the quick sort implemented in Asteroid as another example of this classic style pattern
matching. What is perhaps new is the ‘head-tail’ operator on line 9. Here the variable
‘pivot’ matches the first element of the list and the variable ‘rest’ matches the remaining
list which is the original list with its first element removed. On lines 15 and 17 we can see
that the ‘+’ operator symbols has been overloaded in the standard model to act as a list
concatenation operator as mentioned above. As expected, the output of this program is,

[ 0 , 1 , 2 , 3 ]

We can also introduce our own custom constructors and use them in pattern matching.
The program in Listing 6 implements Peano addition on terms (en.wikipedia.org/wiki/
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Listing 6: Asteroid implementation of Peano addition.

1 load ” i o ” .
2
3 con s t ruc to r S with a r i t y 1 .
4
5 func t i on reduce
6 with x + 0 do
7 return reduce (x ) .
8 orwith x + S(y ) do
9 re turn S( reduce (x + y ) ) .

10 orwith term do
11 return term .
12 end func t i on
13
14 p r i n t ( reduce (S(S(0))+S(S(S ( 0 ) ) ) ) ) .

Peano_axioms\#Addition) using the two Peano axioms,

x+ 0 = x

x+ S(y) = S(x+ y)

Here ‘x’ and ‘y’ are variables, ‘0’ represents the natural number with value zero, and ‘S’
is the successor function. In Peano arithmetic any natural number can be represented by
the appropriate number of applications of the successor function to the natural number
‘0’. On line 3 our program defines the constructor ‘S’ to represent the successor function.
Next, starting with line 5, it defines a function that uses pattern matching to identify
the left sides of the two axioms. If either one pattern matches the input to the ‘reduce’
function it will activate the corresponding function body and rewrite the term recursively
in an appropriate manner. We have one additional pattern which matches if neither one
of the Peano axiom patterns matches and terminates the recursion. Finally, on line 14
we use our ‘reduce’ function to compute the Peano term for the addition of 2 + 3. As
expected, the output of this program is,

S(S(S(S(S ( 0 ) ) ) ) )

Observe that due to the fact that here we operate only in Asteroid’s default term model,
the ‘+’ operator symbol was available to us as a constructor which allowed us to write the
Peano addition in a very natural style.

5..3 Pattern Matching in Control Structures

Control structure implementation in Asteroid is along the lines of any of the modern
programming languages such as Python, Swift, or Rust. For example, the ‘for’ loop allows
you to iterate over lists without having to explicit define a loop index counter. In this
discussion we solely focus on the pattern matching aspects in control structures. We look
at pattern matching in ‘if’ statements, ‘while’ and ‘for’ loops, and ‘try-catch’ statements.

Before we begin the discussion we need to introduce the ‘is’ predicate which is a built-
in operator that takes the pattern on the right side and applies it to the subject term
on the left side (not to be confused with the Prolog ‘is’ predicate). If there is a match
the predicate will return ‘true’ if not then it will return ’false’. Here is a snippet that
illustrates the predicate,

l e t t rue = 1 + 2 i s x + y .
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The subject term ‘1 + 2’ is matched to the pattern ‘x + y’ which of course will succeed
with the variable bindings x 7→ 1 and y 7→ 2.

5..3.1 Pattern Matching in ‘if ’ Statements

In Asteroid an ‘if’ statement consists of an ‘if’ clause followed by zero or more ‘elif’ clauses
followed by an optional ‘else’ clause. The semantics of the ‘if’ statement is fairly standard.
The ‘if’ and ‘elif‘ clauses test the value of their corresponding expressions for the term
‘true’ and execute their corresponding set of statements if it does evaluate to ‘true’. If
none of the expressions evaluate to ‘true’ then the ‘else’ clause is executed if present.

In order to enable pattern matching in ‘if’ statements we use the ‘is’ predicate. We
can rewrite the ‘reduce’ function from Listing 6 using pattern matching in ‘if’ statements
as an illustration,

f unc t i on reduce
with term do

i f term i s x + 0 do
return reduce (x ) .

e l i f term i s x + S(y ) do
re turn S( reduce (x + y ) ) .

e l s e do
re turn term .

end i f
end func t i on

One thing to note is that the variable bindings of a successful pattern match are immedi-
ately available in the corresponding statements of the ‘if’ or ’elif’ clause.

5..3.2 Pattern Matching in ‘while’ Loops

Pattern matching in ‘while’ loops follows a similar approach to pattern matching in ‘if’
statements. The ‘while’ statement tests the evaluation of the loop expression and if it
evaluates to the term ‘true’ then the loop body is executed. Again we use the ‘is’ predicate
to enable pattern matching in ‘while’ loops.

Listing 7 shows a program that employs pattern matching using the head-tail operator
in the ‘while’ expression in order to iterate over a list and print the list elements. Note
that the ‘if’ statement on line 8 is necessary because applying the head-tail operator to
an empty list throws an exception. As one would expect, the output of this program is,

1
2
3

Listing 7: Pattern matching in ‘while’ loop.

1 load ” i o ” .
2
3 l e t l i s t = [ 1 , 2 , 3 ] .
4
5 whi l e l i s t i s [ head | t a i l ] do
6 p r i n t head .
7 l e t l i s t = t a i l .
8 i f l i s t i s [ ] do
9 break .

10 end i f
11 end whi l e
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Listing 8: Pattern matching in ‘for’ loop selecting substructures.

1 load ” standard ” .
2 load ” i o ” .
3 load ” u t i l ” .
4
5 con s t ruc to r Person with a r i t y 2 .
6
7 l e t people = [
8 Person (”George ” , 32) ,
9 Person (” Sophie ” , 46) ,

10 Person (” Ol ive r ” , 21)
11 ] .
12
13 l e t n = length people .
14 l e t sum = 0 .
15
16 f o r Person ( , age ) in people do
17 l e t sum = sum + age .
18 end f o r
19
20 p r i n t (” Average Age : ” + (sum/n ) ) .

5..3.3 Pattern Matching in ‘for’ Loops

Of course Asteroid supports ‘for’ loops indexed over integers,

f o r x in 1 to 3 do
pr in t x .

end f o r

or loops that iterate over lists,

f o r b i rd in [ ” turkey ” ,” duck ” ,” ch icken ” ] do
p r i n t b i rd .

end f o r

Actually, in the integer example above the loop also iterates over a list because the operator
‘1 to 3’ returns the list ‘[1,2,3]’.

In addition to these canonical examples we can expand the loop variable into a pattern
and do pattern matching while we are iterating. This allows us to access substructures
of the items being iterated over in a direct and succinct way. Listing 8 shows such a
program. The program constructs a list of ‘Person’ structures that consist of a name and
an age (line 7). The ‘for’ loop on line 16 iterates over this list while pattern matching the
‘Person’ constructor at each iteration binding the age variable to the appropriate value in
the structure. In the loop body it carries a running sum of the age values which it then
uses to compute the average age of the persons on the list (line 20). The output of this
program is,

Average Age : 33

We can also use pattern matching on the index variable of a ‘for’ loop to select certain
items from a list. Suppose we extend the ‘Person’ structure of the program in Listing 8
with an additional field capturing the sex of a person. The program in Listing 9 does just
that. That additional field is then used by the ‘for’ loop on line 11 to select only male
members on the list and print out their names. As expected, the output of this program
is,

George
Ol ive r

12
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Listing 9: Pattern matching in ‘for’ loop used for filtering.

1 load ” i o ” .
2
3 con s t ruc to r Person with a r i t y 3 .
4
5 l e t people = [
6 Person (”George ” , 32 , ”M”) ,
7 Person (” Sophie ” , 46 , ”F”) ,
8 Person (” Ol ive r ” , 21 , ”M”)
9 ] .

10
11 f o r Person (name , , ”M”) in people do
12 p r i n t name .
13 end f o r

Listing 10: Basic exception handling in Asteroid.

1 load ” i o ” .
2 load ” standard ” .
3
4 t ry
5 l e t i = 10/0 .
6 p r i n t i .
7 catch e do
8 p r i n t e .
9 end try

5..3.4 Pattern Matching in ‘try-catch’ Statements

Excpetion handling in Asteroid is very similar to exception handling in many of the other
modern programming language available today. Listing 10 shows an Asteroid program
that performs basic exception handling. On line 5 it attempts a division by zero which
will throw an exception. The exception is caught by the ‘catch’ clause on line 7 and its
value printed on line 8. The output of the program is the value of the exception,

[ Exception , i n t e g e r d i v i s i o n or modulo by zero ]

By default, exceptions in Asteroid are pairs where the first component is an exception
specifier and the second component is the value of the exception. In Asteroid we can
pattern match on the structure of exceptions in the ‘catch’ clause. Listing 11 shows the
same program from above where the ‘catch’ clause on line 7 has been modified to match
the structure on the exception explicitly. Here we pattern match on the exception specifier
and print out the value of the exception. As expected, the output of the program is,

i n t e g e r d i v i s i o n or modulo by zero

The structure of the exceptions as shown in the previous examples are by convention only
and all internally generated exceptions in Asteroid follow that convention. However, there
is nothing to prevent the user to create his or her own exception structures and objects
and pattern match on them in ‘catch’ clauses. Listing 12 shows a program that throws
an exception using the ‘MyException’ constructor on line 6. That exception structure is
pattern matched in the ‘catch’ clause on line 7 and its value is printed on line 8. The
output of this program is,

Hel lo There !

13
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Listing 11: Basic exception handling in Asteroid with pattern matching.

1 load ” i o ” .
2 load ” standard ” .
3
4 t ry
5 l e t i = 10/0 .
6 p r i n t i .
7 catch (” Exception ” , v ) do
8 p r i n t v .
9 end try

Listing 12: Exception handling in Asteroid with custom structures.

1 load ” i o ” .
2
3 con s t ruc to r MyException with a r i t y 1 .
4
5 t ry
6 throw MyException (” He l lo There ! ” ) .
7 catch MyException (v ) do
8 p r i n t v .
9 end try

5..4 Pattern Matching on Objects

We introduce Asteroid’s objects using the dog example from the Python documentation
(docs.python.org/3/tutorial/classes.html). Listing 13 shows that Python example
translated into Asteroid. Asteroid’s object system is prototype based. In Asteroid it is the
convention that object members are given as name-value pairs. That also includes function
members in addition to data members. On line 8 of our example we define our prototype
object with three members: two data members (lines 9 and 10) and one function starting
on line 11. Object members are accessed in a Python dictionary style syntax. What
makes this truly object-oriented is the fact that when an object function is accessed in the
context of a function call, like on line 21, Asteroid generates an implicit object reference
as the first argument to the called function. Notice that at the call site (line 21) we only
provide a single arguments whereas the function definition (line 11) has two arguments;
the first one capturing the object reference. The output of this program is,

Fido : [ r o l l over , play dead ]
Buddy : [ r o l l over , s i t s tay ]

In order to demonstrate pattern matching with object we added a list of dogs to our
program. The resulting program in Listing 14 shows this and starting with line 6 we also
added code that iterates over the list of the dogs and prints out the names of the dogs
whose first trick is ‘roll over’. The filtering of the objects on the list is done via pattern
matching on the loop variable on line 6.

The pattern matching on objects is straight forward due to the fact that objects like
other structures consist of nested constructors. This also includes function constructors. In
Asteroid function constructors are purely syntactic in nature. Asteroid does not compute
any function closures and therefore only supports dynamic scoping. This makes sense in
an enviroment where patterns as first class citizens are also dynamically scoped objects.
We are currently experimenting with the idea on being able to pattern match on function
constructors.

14
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Listing 13: Object-oriented programming in Asteroid.

1 load ” standard ” .
2 load ” i o ” .
3 load ” u t i l ” .
4
5 con s t ruc to r Dog with a r i t y 3 .
6
7 −− assemble the prototype ob j e c t
8 l e t dog proto = Dog (
9 (”name” , ””) ,

10 (” t r i c k s ” , [ ] ) ,
11 (” add t r i c k ” ,
12 lambda
13 with ( s e l f , new tr i ck ) do
14 l e t s e l f@ {” t r i c k s ”} =
15 se l f@ {” t r i c k s ”}+[ new tr i ck ] ) ) .
16
17 −− Fido the dog
18 l e t f i d o = copy dog proto .
19 l e t f ido@ {”name”} = ”Fido ” .
20
21 fido@ {” add t r i c k ”}(” r o l l over ” ) .
22 fido@ {” add t r i c k ”}(” play dead ” ) .
23
24 −− Buddy the dog
25 l e t buddy = copy dog proto .
26 l e t buddy@{”name”} = ”Buddy” .
27
28 buddy@{” add t r i c k ”}(” r o l l over ” ) .
29 buddy@{” add t r i c k ”}(” s i t s tay ” ) .
30
31 −− pr in t out the t r i c k s
32 p r i n t (” Fido : ” + fido@ {” t r i c k s ”} ) .
33 p r i n t (”Buddy : ” + buddy@{” t r i c k s ”} ) .

There is an elegant way of rewriting the last part of the code of the example in Listing 14
starting with line 4 using the fact that in Asteroid patterns are first class citizens. In
Listing 15 we associate our pattern with the variable ‘dog’ on line 4. The quote at the
beginning of the pattern is necessary otherwise Asteroid will try to dereference the variable
‘name’ as well as the anonymous variables ‘ ’. We use the pattern associated with ‘dog’
in the ‘for’ loop on line 9 to filter the objects on the list. The ‘*’ operator is necessary
in order to tell Asteroid to use the pattern associated with the variable ‘dog’ rather than
using the variable itself as a pattern.

5..5 Patterns as First Class Citizens

We have shown in Listing 15 that patterns can be associated with and dereferenced from
variables. Listing 16 illustrates that we can also pass patterns to functions where they can
be used for pattern matching. Here we define a function ‘match’ on line 3 that expects
a subject term and a pattern. It proceeds to pattern match the subject terms to the
pattern using the ‘is’ predicate and returns whatever the predicate returns. Observe the
‘*’ operator in front of the ‘pattern’ variable stating that we want to use the pattern
associated with that variable. On line 8 we call the function ‘match’ with subject term
‘1+1’ and pattern ‘ + ’. The output of this program is the term ‘true’.

We can also construct patterns on-the-fly as shown in Listing 17. Here we construct
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Listing 14: Pattern matching and object-oriented programming in Asteroid.

1
...

2 −− pr in t out a l l the names o f dogs
3 −− whose f i r s t t r i c k i s ’ r o l l over ’ .
4 l e t dogs = [ f ido , buddy ] .
5
6 f o r Dog ( (”name” ,name ) ,
7 (” t r i c k s ” , [ ” r o l l over ” | ] ) ,
8 ) in dogs do
9 p r i n t (name + ” does r o l l over ” ) .

10 end f o r

Listing 15: Storing Asteroid patterns in variables.

1
...

2 l e t dogs = [ f ido , buddy ] .
3
4 l e t dog = ’Dog(
5 (”name” ,name ) ,
6 (” t r i c k s ” , [ ” r o l l over ” | ] ) ,
7 ) .
8
9 f o r ∗dog in dogs do

10 p r i n t (name + ” does r o l l over ” ) .
11 end f o r

two subpatterns on lines 3 and 4. These two subpatterns are used to construct the full
pattern on line 5 when the pattern is evaluated during a pattern match. Finally, we check
whether our pattern is assembled correctly on line 7. The output of the program is ‘true’
meaning our pattern has the same structure as the subject term ‘1+2+3’ on line 7.

A couple of observations:

1. The quotes on lines 3 and 4 are not strictly necessary because we are working in the
default term model.

2. The quote on line 5 is necessary because we don’t want to evaluate the dereference
operators at this point.

3. From this example it is obvious that patterns with dereference operators are dynam-
ically scoped structures. The variables ‘cl’ and ‘cr’ on line 5 will capture their closest
associations when the pattern is evaluated during a pattern match as on line 7.

With Asteroid’s ability to manipulate patterns we can rewrite the program implementing
Peano addition from Listing 6. In the rewritten version the pertinent Peano axioms are
stored as rules in a rule table which the program will access during execution. Listing 18
shows the rewritten program. Our two Peano axioms appear as rules in the rule table
on lines 9 and 10. Note that each rule is written as a pair where the first component is
the left side of the corresponding rule and the second component is the right side of the
corresponding rule. The left sides of the rules represent the patterns that need to match the
subject term and therefore it is not surprising that they are written as quoted expressions.
We also need to write the right sides of the rules as quoted expressions because we want
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Listing 16: Passing Asteroid patterns to functions.

1 load ” i o ” .
2
3 func t i on match
4 with subject , pattern do
5 return sub j e c t i s ∗ pattern .
6 end func t i on
7
8 p r i n t (match(1+1 , ’ + ) ) .

Listing 17: Assembling Asteroid patterns on-the-fly.

1 load ” i o ” .
2
3 l e t c l = ’1 + 2 .
4 l e t c r = ’ 3 .
5 l e t pattern = ’∗ c l + ∗ cr .
6
7 p r i n t (1+2+3 i s ∗ pattern ) .

to delay their evaluations until their corresponding patterns have matched an appropriate
subject term (see line 18).

The function ‘reduce’ searches through the rule table for a match to the current subject
term ‘term’. If a match is found the corresponding right side of the rule is evaluated. If
no match is found then the term is returned unmodified. The output of the program is of
course the Peano term ‘S(S(S(S(S(0)))))’.

Observe that the variables of the right sides of the rules in the rule table do not need
to be preceeded by a ‘*’ dereference operator because we are not in a pattern matching
context. There is no ambiguity here on how a variable should be interpreted – it is always
to be dereferenced.

This example demonstrates that Asteroid’s ability to manipulate both its model (line 5)
and patterns (line 8) allows pattern-level programming (e.g. the rule table and ‘for’ loop
body) to coexist seamlessly with value-level programming (e.g. the ‘for’ loop expression).

5..6 Advanced Model Manipulation

Here we look at a couple of examples involving interesting aspects of model manipulation
in Asteroid. The first program in Listing 19 shows how straight forward it is to switch
between pattern- and value-level programming in Asteroid. We define a constructor ‘S’
and an increment function ‘inc’ on lines 4 and 6, respectively. We then continue to print
out the value of the term ‘S(S(S(0)))’ on line 13 which will print exactly the same way
on the output because ‘S’ is a constructor. Next, on line 14, we attach the ‘inc’ function
as an interpretation to the constructor ‘S’. We then continue to print out the value of the
same term ‘S(S(S(0)))’ on line 15. However, now ‘S’ has an interpretation as an increment
function so the value printed to the output is ‘3’. Next, on line 16, we detach the ‘inc’
function from the constructor and then print the same term again on line 17. Since at
this point ‘S’ is again just a constructor the output generated is ‘S(S(S(0)))’.

The example in Listing 20 shows that models do not always have to be value-oriented.
Instead we can interpret one structure with another. Observe that in this example we do
not load the standard model and only work in the default term model. We define our by
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Listing 18: Peano addition implementation using a lookup table for the rewrite rules.

1 load ” standard ” .
2 load ” u t i l ” .
3 load ” i o ” .
4
5 detach from p l u s . −− ’+ ’ i s a con s t ruc to r
6 con s t ruc to r S with a r i t y 1 .
7
8 l e t r u l e t a b l e = [
9 ( ’ x + 0 , ’ reduce (x ) ) ,

10 ( ’ x + S(y ) , ’S ( reduce (x + y ) ) )
11 ] .
12
13 func t i on reduce
14 with term do
15 f o r i in 0 to l ength ( r u l e t a b l e ) − 1 do
16 l e t ( lhs , rhs ) = ru l e tab l e@ [ i ] .
17 i f term i s ∗ l h s do
18 re turn eva l ( rhs ) .
19 end i f
20 end f o r
21 re turn term .
22 end func t i on
23
24 p r i n t ( reduce ( ’ S (S ( 0 ) ) + S(S(S ( 0 ) ) ) ) ) .

now familiar constructor ‘S’ on line 3 and an increment function ‘inc’ on line 5. Because
we did not load the standard model the ‘inc’ function returns a structure rather than
a value (‘+’ is treated as a constructor). On line 10 we print out the interpretation of
the term structure ‘S(S(S(0)))’ which under the default term model is just the structure
‘S(S(S(0)))’. Next we attach the function ‘inc’ as an interpretation to the constructor ‘S’
on line 12. On line 13 we again print out the interpretation of term ‘S(S(S(0)))’. In this
case, because ‘S’ now has an interpretation, the value is the structure,

p l u s ( [ 1 , p l u s ( [ 1 , p l u s ( [ 1 , 0 ] ) ] ) ] )

Here we can see that we interpreted one structure with another.

6. Remarks and Further Work

As we have seen in the previous section, there is an intricate interplay between the ability
to pattern match structures and the kind of model that is used for the structures. If
we are using a value-based model (like the Asteroid standard model) then only limited
pattern matching and construction is possible because here many of the expression-level
constructors and operators tend to represent functions that compute values and therefore
are not available for pattern matching and construction. On the other hand, if we choose
a term-based model (like the Asteroid default model) then virtually any expression-level
constructor or operator is available for pattern matching or construction. The strength
of Asteroid is that the developer has complete control over which model to deploy (or
create) and therefore has complete control over the amount of pattern- versus value-level
programming is available for a particular problem domain.

The problem with our current generation of “general purpose” programming languages
like Python, Swift, and Rust is that they have a fixed interpretation of their expression-
level structures which limits pattern-matching and in general inhibits the full deployment
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Listing 19: Switching back and forth between pattern- and value-level programming in
Asteroid.

1 load ” standard ” .
2 load ” i o ” .
3
4 con s t ruc to r S with a r i t y 1 .
5
6 func t i on inc
7 with n do
8 return 1 + n .
9 end func t i on

10
11 −− switch between pattern− and
12 −− value−l e v e l programming
13 p r i n t (S(S(S ( 0 ) ) ) ) .
14 attach inc to S .
15 p r i n t (S(S(S ( 0 ) ) ) ) .
16 detach from S .
17 p r i n t (S(S(S ( 0 ) ) ) ) .

Listing 20: Interpreting structure with structure.

1 load ” i o ” .
2
3 con s t ruc to r S with a r i t y 1 .
4
5 func t i on inc
6 with n do
7 return 1 + n .
8 end func t i on
9

10 p r i n t (S(S(S ( 0 ) ) ) .
11
12 attach inc to S .
13 p r i n t (S(S(S ( 0 ) ) ) .

of pattern-level programming.
In terms of further work; semantic details such as the scope of a particular model and

the scope of a particular attach/detach operation need to be further investigated.
Another issue we would like to explore is to extend models or interpretations to non-

arithmetic constructors such as lists. Currently the list contructor ‘[ ]’ has a fixed, term-
based interpretation. It would be interesting to be able to attach a semantics other than
the term-based model to lists.

As mentioned before, in Asteroid function constructors are purely syntactic objects
and therefore it would be interesting to explore the ability to pattern match on them. The
non-trivial part here is that unless we restrict ourselves to very simple functions that only
compute on expression-level structures we might be forced to be able to pattern match on
arbitrary flow of control structures such as ‘for’ loops and ‘if’ statements.

We need a more powerful expression parser. Eventhough in Asteroid the models for
expression-level structures are under the developer’s control the precedence and associativy
of the respective operators are fixed in the current parser. We would like to develop a
parser that brings all that under the control of the developer in a similar fashion to ISO
compatible Prolog implementations using the ‘op’ predicate to extend the parser.
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7. Conclusions

Here we identified pattern-level (term-level) programming languages as languages that
combine various patterns to form other patterns until the final result patterns are obtained.
New patterns are constructed from existing ones by the application of pattern-to-pattern
functions exploiting pattern matching and constructors. Our insight that pattern-level
and value-level programming gives rise to a pattern-value duality that was used as the
foundation of the design of our new programming language called Asteroid. Hallmarks
of this new programming language design are the developer’s ability to explicitly control
the interpretation or model of expressions terms and the notion of ‘patterns as first class
citizens’. We have shown that Asteroid supports many pattern-level programming tech-
niques not available in our current generation of programming languages such as Python,
Swift, and Rust. We have also shown that Asteroid seamlessly integrates pattern- and
value-level programming.
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